
Concepts
This chapter introduces you to a number of different core concepts in Nix and NixOS, as well as
various of the important tools in the ecosystem.

What is Nix?
What is nixpkgs?
What is NixOS?
What is NixOps?
What is Hydra?
What is a derivation?
What is the Nix store?
The high-level workflow of Nix
Frequently Asked Questions

What is Nix?
Nix is a next-generation package and system manager.

Many other package managers suffer from dependency conflict issues, and many systems built on
them 'decay' over time, becoming messier, slower, and more prone to crashes over time. Nix does
not suffer from these issues, because of a few unique properties:

Deterministic: Building the same thing in Nix with the same configuration always results
in the same output. No matter where you build it, what else is installed, or how you've
configured your system. If it works in one place, it works everywhere; if it breaks in one
place, it breaks everywhere in exactly the same way. No more "works on my system".
Isolated: Every package has its own fully-declared set of dependencies, that doesn't
conflict with any other package on the system. Dependencies are deduplicated where
possible, but it's completely possible to have an unlimited amount of different versions of
the same dependency, used by different applications - without dependency conflicts.
Customizable: All packages can be freely modified, right from within your system
configuration, without needing complex custom repository infrastructure or tooling. That
includes making patches to dependencies, even for a single application, without affecting
anything else on the system! Packaging your own applications is easier, too.
End-to-end: 'Packages' aren't just software. Nix can build your system configuration, too,
with all of the same guarantees, and it can seamlessly extend to container or even multi-
system management - whether it's synchronizing the software on your desktop and your
laptop, or managing a large fleet of production servers.
Centralized configuration: All your configuration options - for your OS, for your
services, and so on - are contained within the configuration.nix file (or, optionally, any files
you import from it). This means you can use a single syntax for configuring everything,
and Nix will take care of converting it to the right configuration format for the software
you are using.
No runtime overhead: Best of all, Nix can do all of the above without needing VMs or
containers. That means that there's no runtime overhead, and it works absolutely fine in
graphical environments like on a desktop or laptop, too! You can use VMs or containers, of
course, where you need them - they're just a part of your system configuration.

These properties give you a lot of nice features:

Reliability: A Nix-based system is much more reliable than what you could get from
another Linux distribution (that isn't based on the Nix model, anyway). Mystery failures
are eliminated, problems are easier to diagnose, and they can be reliably reproduced by
people helping you out, even if they are running a totally different system configuration.
Rollbacks: Change your kernel settings? Install some experimental drivers or software?
No problem. If something breaks, you can just roll back to a previous version of your

system - even if your system doesn't boot anymore.
Ease of installation: No need to resolve dependency conflicts, or mess around with
virtualenv , or pick between two pieces of software that require different conflicting
dependencies. Software just works. Even if it's ancient software that requires ancient
dependency versions to run that are supported by nothing else, you can make it work
without breaking any other software.
Easy synchronization: Synchronizing software or system configurations between
computers is as simple as copying over your configuration.nix , either manually or through
something like Git or even Dropbox. Since the entire system is built from that file, you can
apply it to any amount of computers without issues, even if they were running a totally
different configuration before.
No 'cruft' or 'decay': Because your system state is derived entirely from the
configuration you give it, and not from piecemeal "change this, change that" instructions,
your system doesn't accumulate 'cruft' over time like you may be used to from other
distributions. A 5-year-old NixOS installation will run just as smoothly and reliably as a 2-
day-old one, because effectively every configuration change is a (fast) reinstallation. The
only exception is stateful data generated by applications, and this can be eliminated too if
you really want.
Automated package testing: Because all builds are isolated and deterministic, it's
possible to do fully automated package tests, to verify that a package really works as
advertised. This is done for (a subset of) the official package set, too.

The properties above are not entirely without tradeoffs - make sure to read the section below about
the tradeoffs in the FAQ before diving into Nix and NixOS.

What is Nix (the language)?
Confusingly, the name "Nix" is not just used for the package manager, but also for the language
that you use to write packages or system configurations. Sometimes, people call it 'nixlang' to
differentiate it from the package manager, and we'll do the same in this documentation.

nixlang is a little different from what you might be used to. It's a bit like a declarative language
such as JSON, but also a bit like a 'real' programming language, with support for functions and
variables (sort of). An excellent step-by-step introduction to the language can be found here - it's a
fairly simple language, but because it has some unusual characteristics, you should definitely give
that a read.

This language is used throughout Nix, and in all of the tooling surrounding it. It's the language you
use for writing package definitions, modifying your system configuration, managing multiple
servers, and even for writing package tests. Because it allows creating functions and other
abstractions, it can support configuration at any scale, without becoming complex to use for the
simple cases.

https://discourse.nixos.org/uploads/default/original/2X/7/76e182d786c94e7d9dd9cb9326574b5edcfdcf95.png
https://wiki.slightly.tech/books/learning-nixos/page/frequently-asked-questions
https://gist.github.com/joepie91/9fdaf8244b0a83afcce204e6da127c7d#what-is-nix-the-language
https://medium.com/@MrJamesFisher/nix-by-example-a0063a1a4c55

If you're curious why Nix has its own custom language, and why it doesn't just use something that
already exists, have a look in the FAQ.

https://wiki.slightly.tech/books/learning-nixos/page/frequently-asked-questions

What is nixpkgs?
You'll often run across the name 'nixpkgs' in this documentation. Nix itself is really just the package
manager and build tool - it doesn't come with any software packages, and expects the user to point
it at some sort of 'package set'.

That's where nixpkgs comes in - it's the officially maintained package set for Nix, and it's what
almost every Nix user uses. It contains a wide selection of software - comparable to what you might
find in most Linux distributions, and often even exceeding them - as well as all the bits and pieces
for NixOS.

You're not limited to using nixpkgs, of course. It's just selected as a default when you install Nix,
and you're free to add other package sets, or write an 'overlay' that extends nixpkgs with
additional packages. For example, Mozilla maintains a nixpkgs overlay for their Rust and Firefox
projects; and many users maintain Flakes, which can provide their own package sets.

If you're in a more experimental mood, you could even totally remove nixpkgs, and write your own
package set from scratch. This is something that most users won't want (or need) to do, though.

https://nixos.org/nixos/packages.html
https://wiki.slightly.tech/books/learning-nixos/page/what-is-nixos
https://github.com/mozilla/nixpkgs-mozilla

What is NixOS?
While Nix can run as a stand-alone package manager on any Linux system, and even on macOS,
there's only so much that it can do without control over the rest of the system. NixOS is a Linux
distribution that takes the concept of Nix a step further, by making it possible to use Nix for
managing your entire system - from software, to services, to kernel settings, to container
management, all using the same language.

This wiki is for learning both Nix and NixOS - NixOS-specific sections will be marked as such.

What is NixOps?
Nix (and NixOS) themselves only manage a single machine. If you want to manage multiple
machines, especially if they are many servers, you can use a tool like NixOps - it's an 'orchestration
tool' like Ansible, Chef, or Puppet, but with the guarantees of Nix. Like all of the other tools, you use
nix-lang for specifying your systems.

If you're curious about what NixOS with NixOps does better than other orchestration tools, give this
excellent article a read.

NixOps is only one of many deployment tools for Nix and NixOS, and it is mentioned here
because it was the first one. If you only need to manage one or a few servers, there are
many other options that are often simpler, such as morph. These will likely get their own
wiki articles at a later time.

http://gfxmonk.net/2015/01/03/nixos-and-stateless-deployment.html
http://gfxmonk.net/2015/01/03/nixos-and-stateless-deployment.html
https://github.com/DBCDK/morph

What is Hydra?
Hydra is, more or less, a build server. Unsurprisingly, it uses Nix and nixlang for specifying what to
build. It's used to build the binary packages for nixpkgs, for example, as well as for running
automated tests to ensure that packages actually work. If you're just using Nix or NixOS as an end
user, you probably don't need to care about this.

Because Hydra supports deployment operations after a successful build-and-testing cycle, you
could also technically consider it a Continuous Deployment system.

https://wiki.slightly.tech/books/learning-nixos/page/what-is-nix
https://wiki.slightly.tech/books/learning-nixos/page/what-is-nixpkgs
https://wiki.slightly.tech/books/learning-nixos/page/what-is-nixos

What is a derivation?
You can think of a derivation as a set of build instructions, somewhat similar to how IKEA furniture
comes with an assembly manual. The furniture (or package, or configuration file, or...) still needs to
be built, but the build instructions (the derivation) have the information on how to do so. Nix takes
these instructions, and uses them to create a build result.

Derivations are described using the Nix language (nixlang), and they may build anything - it
doesn't need to be a software package! You might have a derivation for every software package
that is being a built, and a derivation for your system configuration, and a derivation for each
(automatically generated) configuration file for the software on your system, and so on.

Derivations also keep track track of their dependencies; that is, which other derivations are
referenced inside of its instructions. Nix needs this information to make sure that everything is built
in the correct order, and correctly linked together.

There is a derivation function in the standard library of Nix, but in practice you will probably
never use it. Instead, you will most likely be using mkDerivation , which is a wrapper function
in nixpkgs that automatically handles some things for you. This is explained further in the
chapter about nixpkgs.

https://wiki.slightly.tech/link/79#bkmrk-what-is-nix-%28the-lan
https://wiki.slightly.tech/books/learning-nixos/page/what-is-nixpkgs

What is the Nix store?
The Nix store is a folder, located at /nix/store by default, that contains every build result from a
derivation that Nix has ever generated. These build results stay in the Nix store until they are
explicitly garbage-collected. Each entry in the Nix store is prefixed by a hash of the derivation that
was used to build - this is how Nix avoids building the same thing more than once, and how it
ensures that there is a unique reference to every possible version and variant of a piece of
software.

You should not ever need to touch the Nix store manually; it is entirely under the control of Nix.
However, Nix does provide several utilities for managing the store, such as nix-collect-garbage .

https://wiki.slightly.tech/books/learning-nixos/page/what-is-a-derivation

The high-level workflow of
Nix
You can use Nix to build many different things for many different purposes. However, the basic
workflow is always the same:

1. You specify some kind of Nix expression. This can be a simple expression, a whole system
configuration, a Morph deployment... anything that is written in Nixlang.

2. You evaluate that expression, and recursively evaluate everything it references, using Nix.
Wherever Nix encounters derivations, it will build them and turn them into the store path
of their build result. It then returns the result of the 'top-level' expression you asked it to
evaluate.

3. You apply the result of that expression in some way. For a NixOS configuration that means
setting it as the default boot target in the bootloader, for a Morph deployment that means
that Morph will send it to the remote server over SSH, for a VM build that means it gives
you a link to the generated VM image, and so on.

Importantly, when using NixOS, this same workflow also applies to changing any of your system
configuration, and even installing packages! You never "install a package" as a discrete action -
rather, you add an item to the list of packages that should exist on your system, and rebuild the
configuration using nixos-rebuild .

In that process, Nix will notice that a package is referenced that it doesn't have yet, so it builds or
downloads it. Then nixos-rebuild changes the system environment to the new version of your
system, where this package is part of the environment. The end result is that the package is now
available for you to use.

This is often one of the things that people have the most trouble with, when learning NixOS -
unlearning the idea of "installing packages" as a command that you run, and instead thinking of
your system configuration as having 'versions' that do or do not have certain packages available.
It's a little bit like a version control such as Git.

Isn't that a really limiting workflow?
Yes and no! It's true that this workflow makes some things a bit harder, and that it can take some
time to get used to. However, NixOS can do everything that more traditional Linux distributions can
do in terms of configuration, and - thanks to this workflow - can even do some things that they
can't do, like going back to past versions of your system, or having virtual environments on the

https://wiki.slightly.tech/books/learning-nixos/page/what-is-nixos
https://wiki.slightly.tech/books/learning-nixos/page/what-is-nixos
https://wiki.slightly.tech/books/learning-nixos/page/introduction-to-morph
https://wiki.slightly.tech/books/learning-nixos/page/what-is-nix
https://wiki.slightly.tech/books/learning-nixos/page/what-is-a-derivation
https://wiki.slightly.tech/books/learning-nixos/page/what-is-the-nix-store

same system that look completely different.

Because every version of the system is itself a build result from a derivation, it can be referenced
and managed in the same way that a piece of software might be. Opening a shell that points at a
particular environment, generating a virtual machine image out of an environment, it's all possible.

Frequently Asked Questions
General
Are there any downsides?
Yes. Here are some of the most common issues that people run in today:

Poor user experience: While the concepts behind Nix are great and could make system
management a lot easier, the current generation of Nix tools can still be rather awkward
to use. A lot of user experience kinks haven't been quite worked out yet, although this is a
problem that's being worked on, and solvable in the long term.
Poor documentation: The documentation for Nix and associated tools isn't great yet.
This wiki is a (hopefully successful!) attempt at improving that, but you'll most likely still
run into quite a few 'documentation deserts' while using Nix, especially when just getting
started. Please do contact me about documentation you're missing - it'll help me improve
the wiki!
Incompatibility with other Linux systems: This is a less solvable problem, mostly
specific to NixOS. To be able to provide the guarantees that it does, Nix makes some
unusual decisions in how it structures your system. This means that, for example, /usr
doesn't exist - and neither do many of the other 'well-known locations' that tools and
users alike expect.
This isn't a problem for packaged software, but it means that random 'static Linux
binaries' downloaded from the internet won't work on NixOS out of the box. This includes
AppImages, and many proprietary games. Some workarounds exist (in the form of steam-
run and appimage-run), but it's still not the click-and-run experience that you get on other
distributions.
Similarly, configuration files aren't in a big bucket that you can edit at will - it's not
possible to edit configuration files from outside of your Nix configuration, and various
other such limitations exist. This isn't necessarily a problem (since you can still modify
configuration files through your Nix configuration, for example), but it means you will have
to adjust your habits and essentially re-learn a lot of Linux things.
While work is ongoing on reducing the impact of these differences to end users, NixOS will
never work exactly like the distributions you're used to - the model that those
distributions use is fundamentally incompatible with the guarantees that Nix provides.

Should I use Nix?
That depends. Given how different Nix is from 'traditional' package management systems and
Linux distributions, it will take quite some time to learn how all of it works.

https://gist.github.com/joepie91/9fdaf8244b0a83afcce204e6da127c7d#general
https://gist.github.com/joepie91/9fdaf8244b0a83afcce204e6da127c7d#are-there-any-downsides
mailto:admin@cryto.net
https://gist.github.com/joepie91/9fdaf8244b0a83afcce204e6da127c7d#should-i-use-nix

If you decide to use Nix on another distribution, then you can do this while you continue using your
other package manager, so you won't get 'blocked' on not understanding something about Nix yet.
However, the benefits you get from Nix will also be limited to just package management.

If you decide to use NixOS, then you can use the full range of system management niceties
available - but there won't be an 'escape hatch' when you're not sure how to do something, so this
is a somewhat steeper learning curve. You should expect to be figuring things out for at least a
week, when taking this route.

It really all comes down to this: you'll have to spend effort upfront to learn about how Nix works,
and that can be quite a bit of work. But in the long term you'll get a much more reliable system out
of it, and it'll make your life easier. Whether you're willing to make that tradeoff, is up to you.

The Nix language (nixlang)
Why a custom language? Why not use something that
already exists?
Most languages are one of roughly two types:

Declarative: These are languages like JSON, YAML, XML, TOML, and so on. They're
typically very simple, only supporting statically specified data or maybe really basic
references, without any logic. They're especially suited for serialization, and for cases
where you need to extensively inspect the information written in it, like in configuration
files.
Imperative: These are what you might think of when you hear 'programming language';
Python, C++, JavaScript, Rust, Lua, and so on. They typically specify a sequence of
instructions that modify state and might produce output. They're especially suited
towards implementing arbitrary logic, like in software, but it's hard to 'inspect' the state of
the application.

The problem is that Nix needs a little bit of both. It's mostly data-oriented - a system configuration
is data, package metadata is data - but it's also about data that's complex enough and sometimes
repetitive enough that you want to be able to use logic to produce it.

nixlang is precisely that - a simple and mostly-declarative language with enough abstraction that
you can programmatically generate data, but not so much that it becomes difficult to inspect.

One particularly unique aspect of it is that it's lazily-evaluated; that is, instead of executing some
logic and storing the result in a variable, you store the logic itself in a variable, and the first time
that variable is accessed, the logic is executed and the result remembered for future access. This is
what makes it possible to have tens of thousands of packages in a Nix package set, without
needing to execute all logic every time you need a single package.

https://gist.github.com/joepie91/9fdaf8244b0a83afcce204e6da127c7d#the-nix-language-nix-lang
https://gist.github.com/joepie91/9fdaf8244b0a83afcce204e6da127c7d#why-a-custom-language-why-not-use-something-that-already-exists

