avascript

Anything about Javascript in general, that isn't specific to Node.js.

Whirlwind tour of (correct) npm usage

An overview of Javascript tooling

Monolithic vs. modular - what's the difference?

Synchronous vs. asynchronous

What is state?

Promises reading list

The Promises FAQ - addressing the most common questions and misconceptions about

Promises

Error handling (with Promises)

Bluebird Promise.try using ES6 Promises

Please don't include minified builds in your npm packages!

How to get the actual width of an element in jQuery, even with border-box: box-sizing

A survey of unhandledRejection and rejectionHandled handlers

Quill.js glossary

Riot.js cheatsheet

Quick reference for “checkit® validators

ES Modules are terrible, actually

A few notes on the "Gathering weak npm credentials" article

Whirlwind tour of (correct)
npm usage

This article was originally published at
https://gist.github.com/joepie91/9b9dbd8c9ac3b55a65b2.

This is a quick tour of how to get started with NPM, how to use it, and how to fix it.

I'm available for tutoring and code review :)

Starting a new project

Create a folder for your project, preferably a Git repository. Navigate into that folder, and run:
npm init

It will ask you a few questions. Hit Enter without input if you're not sure about a question, and it
will use the default.

You now have a package.json .
If you're using Express: Please don't use express-generator . It sucks. Just use npm init like

explained above, and follow the 'Getting Started' and 'Guide' sections on the Express

website. They will teach you all you need to know when starting from scratch.

Installing a package

All packages in NPM are /ocal - that is, specific to the project you install it in, and actually installed
within that project. They are also nested - if you use the foo module, and foo uses the bar
module, then you will have a ./node_modules/foo/node_modules/bar . This means you pretty much never
have version conflicts, and can install as many modules as you want without running into issues.

https://gist.github.com/joepie91/9b9dbd8c9ac3b55a65b2#starting-a-new-project
https://gist.github.com/joepie91/9b9dbd8c9ac3b55a65b2#installing-a-package
https://gist.github.com/joepie91/9b9dbd8c9ac3b55a65b2
http://cryto.net/~joepie91/code-review.html
http://expressjs.com/
http://expressjs.com/

All modern versions of NPM will 'deduplicate' and 'flatten' your module folder as much as possible
to save disk space, but as a developer you don't have to care about this - it will still work like it's a
tree of nested modules, and you can still assume that there will be no version conflicts.

You install a package like this:

npm install packagename

While the packages themselves are installed in the node_modules directory (as that's where the
Node.js runtime will look for them), that's only a temporary install location. The primary place
where your dependencies are defined, should be in your package.json file - so that they can be
safely updated and reinstalled later, even if your node modules gets lost or corrupted somehow.

In older versions of npm, you had to manually specify the --save flag to make sure that the
package is saved in your package.json ; that's why you may come across this in older articles.
However, modern versions of NPM do this automatically, so the command above should be enough.

One case where you do still need to use a flag, is when you're installing a module that you just
need for developing your project, but that isn't needed when actually using or deploying your
project. Then you can use the --save-dev flag, like so:

npm install --save-dev packagename

Works pretty much the same, but saves it as a development dependency. This allows a user to
install just the 'real' dependencies, to save space and bandwidth, if they just want to use your thing
and not modify it.

To install everything that is declared in package.json , you just run it without arguments:

npm install

When you're using Git or another version control system, you should add node_modules to your
ignore file (eg. .gitignore for Git); this is because installed copies of modules may need to be
different depending on the system. You can then use the above command to make sure that all the
dependencies are correctly installed, after cloning your repository to a new system.

Semantic versioning

Packages in NPM usually use semantic versioning; that is, the changes in a version number indicate
what has changed, and whether the change is breaking. Let's take 1.2.3 as an example version.
The components of that version number would be:

e Major version number: 1
e Minor version number: 2

https://gist.github.com/joepie91/9b9dbd8c9ac3b55a65b2#semantic-versioning

o Patch version number: 3
Depending on which nhumber changes, there's a different kind of change to the module:

e Patch version upgrade (eg. 1.2.3 -> 1.2.4): An internal change was made, but the
API hasn't changed. It's safe to upgrade.

e Minor version upgrade (eg. 1.2.3 -> 1.3.0): The API has changed, butin a
backwards-compatible manner - for example, a new feature or option was added. It's safe
to upgrade. You may still want to read the changelog, in case there's new features that
you want to use, or that you were waiting for.

e Major version upgrade (eg. 1.2.3 -> 2.0.0): The API has changed, and is not
backwards-compatible. For example, a feature was removed, a default was changed, and
so on. It is not safe to upgrade. You first need to read the changelog, to see whether the
changes affect your application.

Most NPM packages follow this, and it gives you a lot of certainty in what upgrades are safe to
carry out, and what upgrades aren't. NPM explicitly adopts semver in its package.json as well, by
introducing a few special version formats:

e ~1.2.3: Allow automatic patch upgrades, but not minor or major upgrades. Upgrading to
1.2.4 is allowed, but upgrading to 1.3.0 or 2.0.0 is not. You still can't downgrade below
1.2.3 - for example, 1.2.2 is not allowed.

e ~1.2.3: Allow automatic patch and minor upgrades, but not major upgrades. Upgrading

to 1.2.4 or 1.3.0 is allowed, but upgrading to 2.0.0 is not. You still can't downgrade below

1.2.3 - for example, 1.2.2 or 1.1.0 are not allowed.

1.2.3 : Require this specific version. No upgrades are allowed. You will rarely need this -

only for misbehaving packages, really.

* 1 Allow upgrades to whatever the latest version is. You should never use this.

By default, NPM will automatically use the ~1.2.3 notation, which is usually what you want. Only
configure it otherwise if you have an explicit reason to do so.

A special case are 0.x.x versions - these are considered to be 'unstable’, and the rules are slightly
different: the minor version number indicates a breaking change, rather than the major version
number. That means that ~0.1.2 will allow an upgrade to 0.1.3, but not to 0.2.0 . This is commonly
used for pre-release testing versions, where things may wildly change with every release.

If you end up publishing a module yourself (and you most likely eventually will), then definitely
adhere to these guidelines as well. They make it a lot easier for developers to keep dependencies
up to date, leading to considerably less bugs and security issues.

Global modules

Sometimes, you want to install a command-line utility such as peerflix , but it doesn't belong to any
particular project. For this, there's the --global or -g flag:

https://gist.github.com/joepie91/9b9dbd8c9ac3b55a65b2#global-modules
https://www.npmjs.com/package/peerflix

npm install -g peerflix

If you used packages from your distribution to install Node, you may have to use sudo for global
modules.

Never, ever, ever use global modules for project dependencies, ever. It may seem 'nice'
and 'efficient’, but you will land in dependency hell. It is not possible to enforce semver constraints
on global modules, and things will spontaneously break. All the time. Don't do it. Global modules
are only for project-independent, system-wide, command-line tools.

This applies even to development tools for your project. Different projects will often need
different, incompatible versions of development tools - so those tools should be installed without
the global flag. For local packages, the binaries are all collected in node_modules/.bin . You can then
run the tools like so:

./node_modules/.bin/eslint

NPM is broken, and | don't understand the
error!

The errors that NPM shows are usually not very clear. I've written a tool that will analyze your error,

and try to explain it in plain English. It can be found here.

My dependencies are broken!

If you've just updated your Node version, then you may have native (compiled) modules that were
built against the old Node version, and that won't work with the new one. Run this to rebuild them:

npm rebuild

My dependencies are still broken!

Make sure that all your dependencies are declared in package.json . Then just remove and recreate
your node_modules :

rm -rf node_modules

npm install

https://gist.github.com/joepie91/9b9dbd8c9ac3b55a65b2#npm-is-broken-and-i-dont-understand-the-error
http://cryto.net/why-is-npm-broken/
https://gist.github.com/joepie91/9b9dbd8c9ac3b55a65b2#my-dependencies-are-broken
https://gist.github.com/joepie91/9b9dbd8c9ac3b55a65b2#my-dependencies-are-still-broken

An overview of Javascript
tooling

This article was originally published at
https://qgist.github.com/joepie91/3381ce7f92dec7al1e622538980c0c43d.

Getting confused about the piles of development tools that people use for Javascript? Here's a
quick index of what is used for what.

Keep in mind that you shouldn't add tools to your workflow for the sake of it. While you'll
see many production systems using a wide range of tools, these tools are typically used because
they solved a concrete problem for the developers working on it. You should not add tools to your
project unless you have a concrete problem that they can solve; none of the tools here are
required.

Start with nothing, and add tools as needed. This will keep you from getting lost in an
incomprehensible pile of tooling.

Build/task runners

Typical examples: Gulp, Grunt

These are not exactly build tools in and of themselves; they're rather just used to glue together
other tools. For example, if you have a set of build steps where you need to run tool A after tool B,
a build runner can help to orchestrate those tools.

Bundlers

Typical examples: Browserify, Webpack, Parcel

These tools take a bunch of .js files that use modules (either Common])S using require()
statements, or ES Modules using import statements), and combine them into a single .js file. Some
of them also allow specifying 'transformation steps', but their main purpose is bundling.

Why does bundling matter? While in Node.js you have access to a module system that lets you load
files as-needed from disk, this wouldn't be practical in a browser; fetching every file individually

https://gist.github.com/joepie91/3381ce7f92dec7a1e622538980c0c43d#buildtask-runners
https://gist.github.com/joepie91/3381ce7f92dec7a1e622538980c0c43d#bundlers
https://nodejs.org/api/modules.html
https://gist.github.com/joepie91/3381ce7f92dec7a1e622538980c0c43d

over the network would be very slow. That's why people use a bundler, which effectively does all
this work upfront, and then produces a single 'combined' file with all the same guarantees of a
module system, but that can be used in a browser.

Bundlers can also be useful for running module-using code in very basic JS environments that don't
have module support for some reason; this includes Google Sheets, extensions for PostgreSQL,
GNOME, and so on.

Bundlers are not transpilers. They do not compile one language to another, and they don't
"make ES6 work everywhere". Those are the job of a transpiler. Bundlers are sometimes configured
to use a transpiler, but the transpiling itself isn't done by the bundler.

Bundlers are not task runners. This is an especially popular misconception around Webpack.
Webpack does not replace task runners like Gulp; while Gulp is designed to glue together arbitrary
build tasks, Webpack is specifically designed for browser bundles. It's commonly useful to use
Webpack with Gulp or another task runner.

Transpilers

Typical examples: Babel, the TypeScript compiler, CoffeeScript

These tools take a bunch of code in one language, and 'compile' it to another language. They're
called commonly 'transpilers' rather than 'compilers' because unlike traditional compilers, these
tools don't compile to a lower-level representation; they're just different languages at a similar
level of abstraction.

These are typically used to run code written against newer JS versions in older JS runtimes (eg.

Babel), or to provide custom languages with more conveniences or constraints that can then be
executed in any regular JS environment (TypeScript, CoffeeScript).

Process restarters

Typical examples: nodemon

These tools automatically restart your (Node.js) process when the underlying code is changed. This
is used for development purposes, to remove the need to manually restart your process every
change.

A process restarter may either watch for file changes itself, or be controlled by an external tool like
a build runner.

Page reloaders

https://gist.github.com/joepie91/3381ce7f92dec7a1e622538980c0c43d#transpilers
https://gist.github.com/joepie91/3381ce7f92dec7a1e622538980c0c43d#process-restarters
https://gist.github.com/joepie91/3381ce7f92dec7a1e622538980c0c43d#page-reloaders

Typical examples: LiveReload, BrowserSync, Webpack hot-reload

These tools automatically refresh a page in the browser and/or reload stylesheets and/or re-render
parts of the page, to reflect the changes in your browser-side code. They're kind of the equivalent
of a process restarter, but for webpages.

These tools are usually externally controlled; typically by either a build runner or a bundler, or
both.

Debuggers

Typical examples: Chrome Developer Tools, node-inspect

These tools allow you to inspect running code; in Node.js, in your browser, or both. Typically they'll
support things like pausing execution, stepping through function calls manually, inspecting
variables, profiling memory allocations and CPU usage, viewing execution logs, and so on.

They're typically used to find tricky bugs. It's a good idea to learn how these tools work, but often

it'll still be easier to find a bug by just 'dumb logging' variables throughout your code using eg.
console.log .

https://gist.github.com/joepie91/3381ce7f92dec7a1e622538980c0c43d#debuggers

Monolithic vs. modular -
what's the difference?

This article was originally published at
https://gist.github.com/joepie91/7f03a733a3a72d2396d6.

When you're developing in Node.js, you're likely to run into these terms - "monolithic" and
"modular”. They're usually used to describe the different types of frameworks and libraries; not just
HTTP frameworks, but modules in general.

At a glance

e Monolithic: "Batteries-included" and typically tightly coupled, it tries to include all the
stuff that's needed for common usecases. An example of a monolithic web framework

would be Sails.js.
e Modular: "Minimal" and loosely coupled. Only includes the bare minimum of functionality
and structure, and the rest is a plugin. Fundamentally, it generally only has a single

'responsibility'. An example of a modular web framework would be Express.

Coupled?

In software development, the terms "tightly coupled" and "loosely coupled" are used to indicate
how much components rely on each other; or more specifically, how many assumptions they make
about each other. This directly translates to how easy it is to replace and change them.

e Tightly coupled: Highly cohesive code, where every part of the code makes assumptions
about every other part of the code.

e Loosely coupled: Very "separated" code, where every part of the code communicates
with other parts through more-or-less standardized and neutral interfaces.

While tight coupling can sometimes result in slightly more performant code and very occasionally
makes it easier to build a 'mental model', loosely coupled code is much easier to understand and
maintain - as the inner workings of a component are separated from its interface or API, you can
make many more assumptions about how it behaves.

http://sailsjs.org/
http://expressjs.com/
https://gist.github.com/joepie91/7f03a733a3a72d2396d6#coupled
https://gist.github.com/joepie91/7f03a733a3a72d2396d6

Loosely coupled code is often centered around 'events' and data - a component 'emits' changes
that occur, with data attached to them, and other components may optionally 'listen' to those
events and do something with it. However, the emitting component has no idea who (if anybody!)
is listening, and cannot make assumptions about what the data is going to be used for.

What this means in practice, is that loosely coupled (and modular!) code rarely needs to be
changed - once it is written, has a well-defined set of events and methods, and is free of bugs, it no
longer needs to change. If an application wants to start using the data differently, it doesn't require
changes in the component; the data is still of the same format, and the application can simply
process it differently.

This is only one example, of course - loose coupling is more of a practice than a pattern. The exact
implementation depends on your usecase. A quick checklist to determine how loosely coupled your
code is:

[l Does your component rely on external state? This is an absolute no-no. Your
component cannot rely on any state outside of the component itself. It may not make any
assumptions about the application whatsoever. Don't even rely on configuration files or other
filesystem files - all such data must be passed in by the application explicitly, always. What
isn't in the component itself, doesn't exist.

[l How many assumptions does it make about how the result will be used? Loosely
coupled code shouldn't care about how its output will be used, whether it's a return value or
an event. The output just needs to be consistent, documented, and neutral.

[l How many custom 'types' are used? Loosely coupled code should generally only
accept objects that are defined on a language or runtime level, and in common use. Arrays
and A+ promises are fine, for example - a proprietary representation of an ongoing task is
not.

[1 If you need a custom type, how simple is it? If absolutely needed, your custom
object type should be as plain as possible - just a plain Javascript object, optimally. It should
be well-documented, and not duplicate an existing implementation to represent this kind of
data. Ideally, it should be defined in a separate project, just for documenting the type; that
way, others can implement it as well.

In this section, I've used the terms "component" and "application", but these are interchangeable
with "callee"/"caller", and "provider"/"consumer". The principles remain the same.

The trade-offs

At first, a monolithic framework might look easier - after all, it already includes everything you
think you're going to need. In the long run, however, you're likely to run into situations where the
framework just doesn't quite work how you want it to, and you have to spend time trying to work
around it. This problem gets worse if your usecase is more unusual - because the framework
developers didn't keep in mind your usecase - but it's a risk that always exists to some degree.

https://gist.github.com/joepie91/7f03a733a3a72d2396d6#the-trade-offs

Initially, a modular framework might look harder - you have to figure out what components to use
for yourself. That's a one-time cost, however; the majority of modules are reusable across projects,
so after your first project you'll have a good idea of what to start with. The remaining usecase-
specific modules would've been just as much of a problem in a monolithic framework, where they
likely wouldn't have existed to begin with.

Another consideration is the possibility to 'swap out' components. What if there's a bug in the
framework that you're unable (or not allowed) to fix? When building your application modularly,
you can simply get rid of the offending component and replace it with a different one; this usually
doesn't take more than a few minutes, because components are typically small and only do one
thing.

In @ monolithic framework, this is more problematic - the component is an inherent part of the
framework, and replacing it may be impossible or extremely hard, depending on how many
assumptions the framework makes. You will almost certainly end up implementing a workaround of
some sort, which can take hours; you need to understand the framework's codebase, the
component you're using, and the exact reason why it's failing. Then you need to write code that
works around it, sometimes even having to 'monkey-patch' framework methods.

Relatedly, you may find out halfway through the project that the framework doesn't support your
usecase as well as you thought it would. Now you have to either replace the entire framework, or
build hacks upon hacks to make it 'work' somehow; well enough to convince your boss or client,
anyway. The higher cost for on-boarding new developers (as they have to learn an entire
framework, not just the bits you're interested in right now), only compounds this problem - now
they also have to learn why all those workarounds exist.

In summary, the tradeoffs look like this:

e Monolithic: Slightly faster to get started with, but less control over its workings, more
chance of the framework not supporting your usecase, and higher long-term maintenance
cost due to the inevitable need for workarounds.

e Modular: Takes slightly longer to get started on your first project, but total control over
its workings, practically every usecase is supported, and long-term maintenance is
cheaper.

The "it's just a prototype!" argument

When explaining this to people, a common justification for picking a monolithic framework is that
"it's just a prototype!", or "it's just an MVP!", with the implication that it can be changed later. In
reality, it usually can't.

Try explaining to your boss that you want to throw out the working(!) code you have, and rewrite
everything from the ground up in a different, more maintainable framework. The best response
that you're likely to get, is your boss questioning why you didn't use that framework to begin with -
but more likely, the answer is "no", and you're going to be stuck with your hard-to-maintain

https://gist.github.com/joepie91/7f03a733a3a72d2396d6#the-its-just-a-prototype-argument

monolithic codebase for the rest of the project or your employment, whichever terminates first.

Again, the cost of a modular codebase is a one-time cost. After your first project, you already know
where to find most modules you need, and building on a modular framework will not be more
expensive than building on a monolithic one. Don't fall into the "prototype trap”, and do it right
from day one. You're likely to be stuck with it for the rest of your employment.

Synchronous vs.
asynchronous

This article was originally published at
https://gist.github.com/joepie91/bf3d04febb024da89e3a3e61b164247d.

You'll run into the terms "synchronous" and "asynchronous" a lot when working with JS. Let's look
at what they actually mean.

Synchronous code is like what you might be used to already from other languages. You call a
function, it does some work, and then returns the result. No other code runs in the meantime. This
is simple to understand, but it's also inefficient; what if "doing some work" mostly involves getting
some data from a database? In the meantime, our process is sitting around doing nothing, waiting
for the database to respond. It could be doing useful work in that time!

And that's what brings us to asynchronous code. Asynchronous code works differently; you still call
a function, but it doesn't return a result. Instead, you don't just pass the regular arguments to the
function, but also give it a piece of code in a function (a so-called "asynchronous callback") to
execute when the operation completes. The JS runtime stores this callback alongside the in-
progress operation, to retrieve and execute it later when the external service (eg. the database)
reports that the operation has been completed.

Crucially, this means that when you call an asynchronous function, it cannot wait until the external
processing is complete before returning from the function! After all, the intention is to keep running
other code in the meantime, so it needs to return from the function so that the 'caller' (the code
which originally called the function) can continue doing useful things even while the external
operation is in progress.

All of this takes place in what's called the "event loop" - you can pretty much think of it as a huge
infinite loop that contains your entire program. Every time you trigger an external process through
an asynchronous function call, that external process will eventually finish, and put its result in a
'queue’ alongside the callback you specified. On each iteration ("tick") of the event loop, it then
goes through that queue, executes all of the callbacks, which can then indirectly cause new items
to be put into the queue, and so on. The end result is a program that calls asynchronous callbacks
as and when necessary, and that keeps giving new work to the event loop through a chain of those
callbacks.

This is, of course, a very simplified explanation - just enough to understand the rest of this page. |
strongly recommend reading up on the event loop more, as it will make it much easier to

https://gist.github.com/joepie91/bf3d04febb024da89e3a3e61b164247d

understand JS in general. Here are some good resources that go into more depth:

1. https://nodesource.com/blog/understanding-the-nodejs-event-loop (article)

2. https://www.youtube.com/watch?v=8aGhZQkoFbQ (video)

3. https://www.youtube.com/watch?v=cCOL7MC4PIO (video)

Now that we understand the what the event loop is, and what a "tick" is, we can define more
precisely what "asynchronous" means in JS:

Asynchronous code is code that happens across more than one event loop tick. An
asynchronous function is a function that needs more than one event loop tick to
complete.

This definition will be important later on, for understanding why asynchronous code can be more
difficult to write correctly than synchronous code.

Asynchronous execution order and
boundaries

This idea of "queueing code to run at some later tick" has consequences for how you write your
code.

Remember how the event loop is a loop, and ticks are iterations - this means that event loop ticks
are distributed across time linearly. First the first tick happens, then the second tick, then the third
tick, and so on. Something that runs in the first tick can never execute before something that runs
in the third tick; unless you're a time traveller anyway, in which case you probably would have
more important things to do than reading this guide [T]

Anyhow, this means that code will run in a slightly counterintuitive way, if you're used to
synchronous code. For example, consider the following code, which uses the asynchronous
setTimeout function to run something after a specified amount of milliseconds:

console.log("one");

setTimeout(() => {
[console.log("two");

}, 300);

console.log("three");

You might expect this to print out one, two, three - but if you try running this code, you'll see that it
doesn't! Instead, you get this:

https://nodesource.com/blog/understanding-the-nodejs-event-loop
https://www.youtube.com/watch?v=8aGhZQkoFbQ
https://www.youtube.com/watch?v=cCOL7MC4Pl0
https://gist.github.com/joepie91/bf3d04febb024da89e3a3e61b164247d#asynchronous-execution-order-and-boundaries

one
three

two
What's going on here?!

The answer to that is what | mentioned earlier; the asynchronous callback is getting queued for
later. Let's pretend for the sake of explanation that an event loop tick only happens when there's
actually something to do. The first tick would then run this code:

console.log("one");
setTimeout(..., 300); // This schedules some code to run in a next tick, about 300ms later

console.log("three");

Then 300 milliseconds elapse, with nothing for the event loop to do - and after those 300ms, the
callback we gave to setTimeout suddenly appears in the event loop queue. Now the second tick
happens, and it executes this code:

console.log("two");

... thus resulting in the output that we saw above.

The key insight here is that code with callbacks does not execute in the order that the code
is written. Only the code outside of the callbacks executes in the written order. For example, we
can be certain that three will get printed after one because both are outside of the callback and so
they are executed in that order, but because two is printed from inside of a callback, we can't
know when it will execute.

"But hold on", you say, "then how can you know that two will be printed after three and one ?"
This is where the earlier definition of "asynchronous code" comes into play! Let's reason through it:

1. setTimeout is asynchronous.

2. Therefore, we call console.log("two") from within an asynchronous callback.

3. Synchronous code executes within one tick.

4. Asynchronous code needs more than one tick to execute, ie. the asynchronous callback
will be called in a later tick than the one where we started the operation (eg. setTimeout).

5. Therefore, an asynchronous callback will always execute after the synchronous code that
started the operation, no matter what.

6. Therefore, two will always be printed after one and three.

So, we can know when the asynchronous callback will be executed, in terms of relative time. That's
useful, isn't it? Doesn't that mean that we can do that for all asynchronous code? Well,

unfortunately not - it gets more complicated when there is more than one asynchronous operation.

Take, for example, the following code:

console.log("one");

someAsynchronousOperation(() => {
[console.log("two");

1);

someOtherAsynchronousOperation(() => {
(console.log("three");

1)

console.log("four");

We have two different asynchronous operations here, and we don't know for certain which of the
two will finish faster. We don't even know whether it's always the same one that finishes faster, or
whether it varies between runs of the program. So while we can determine that two and three will
always be printed after one and four - remember, asynchronous callbacks in synchronous code -
we can't know whether two or three will come first.

And this is, fundamentally, what makes asynchronous code more difficult to write; you never know
for sure in what order your code will complete. Every real-world program will have at least some
scenarios where you can't force an order of operations (or, at least, not without horribly bad
performance), so this is a problem that you have to account for in your code.

The easiest solution to this, is to avoid "shared state". Shared state is information that you store
(eg. in a variable) and that gets used by multiple parts of your code independently. This can
sometimes be necessary, but it also comes at a cost - if function A and function B both modify the
same variable, then if they run in a different order than you expected, one of them might mess up
the expected state of the other. This is generally already true in programming, but even more
important when working with asynchronous code, as your chunks of code get 'interspersed' much
more due to the callback model.

What Is state?

This article was originally published at
https://qgist.github.com/joepie91/8c2cbaba3e6d19b275fdff62bef98311.

"State" is data that is associated with some part of a program, and that can be changed over time
to change the behaviour of the program. It doesn't have to be changed by the user; it can be
changed by anything in the program, and it can be any kind of data.

It's a bit of an abstract concept, so here's an example: say you have a button that increases a
number by 1 every time you click it, and the (pseudo-)code looks something like this:

let counter = 0;

let increment = 1;

button.on("click", () => {
[Jcounter = counter + increment;

1);
In this code, there are two bits of "state" involved:

1. Whether the button is clicked: This bit of data - specifically, the change between "yes"
and "no" - is what determines when to increase the counter. The example code doesn't
interact with this data directly, but the callback is called whenever it changes from "no" to
"yes" and back again.

2. The current value of the counter: This bit of data is used to determine what the next
value of the counter is going to be (the current value plus one), as well as what value to
show on the screen.

Now, you may note that we also define an increment variable, but that it isn't in the list of things
that are "state"; this is because the increment value never changes. It's just a static value (1) that
is always the same, even though it's stored in a variable. That means it's not state.

You'll also note that "whether the button is clicked" isn't stored in any variable we have access to,
and that we can't access the "yes" or "no" value directly. This is an example of what we'll call
invisible state - data that is state, but that we cannot see or access directly - it only exists "behind
the scenes". Nevertheless, it still affects the behaviour of the code through the event handler
callback that we've defined, and that means it's still state.

https://gist.github.com/joepie91/8c2cba6a3e6d19b275fdff62bef98311

Promises reading list

This article was originally published at

https://gist.github.com/joepie91/791640557e3e5fd80861.

This is a list of examples and articles, in roughly the order you should follow them, to show and
explain how promises work and why you should use them. I'll probably add more things to this list
over time.

This list primarily focuses on Bluebird, but the basic functionality should also work in ES6 Promises,
and some examples are included on how to replicate Bluebird functionality with ES6 promises. You
should still use Bluebird where possible, though - they are faster, less error-prone, and have more
utilities.

I'm available for tutoring and code review :)

You may reuse all of the referenced posts and Gists (written by me) for any purpose under the

WTFPL / CCO (whichever you prefer).

If you get stuck

I've made a brief FAQ of common questions that people have about Promises, and how to use
them. If you don't understand something listed here, or you're wondering how to implement a
specific requirement, chances are that it'll be answered in that FAQ.

Compatibility

Bluebird will not work correctly (in client-side code) in older browsers. If you need to support older
browsers, and you're using Webpack or Browserify, you should use the es6-promise module instead,
and reimplement behaviour where necessary.

Introduction

e Start reading here, to understand why Promises matter.

http://www.wtfpl.net/txt/copying/
https://creativecommons.org/publicdomain/zero/1.0/
https://gist.github.com/joepie91/791640557e3e5fd80861#if-you-get-stuck
https://wiki.slightly.tech/books/miscellaneous-notes/page/the-promises-faq-addressing-the-most-common-questions-and-misconceptions-about-promises
https://gist.github.com/joepie91/791640557e3e5fd80861#compatibility
https://www.npmjs.com/package/es6-promise
https://gist.github.com/joepie91/791640557e3e5fd80861#introduction
http://bluebirdjs.com/docs/why-promises.html
https://gist.github.com/joepie91/791640557e3e5fd80861
http://cryto.net/~joepie91/code-review.html

e If it's not quite clear yet, some code that uses callbacks, and its equivalent using Bluebird.

e A demonstration of how promise chains can be 'flattened'

Promise.try

Many guides and examples fail to demonstrate Promise.try, or to explain why it's important. This

article will explain it.

Error handling

A quick introduction

An illustration of error bubbling: step 1, step 2

Implementing 'fallback' values (ie. defaults for when an asynchronous operation fails)

bluebird-tap-error, a module for intercepting and looking at errors, without preventing

propagation. Useful if you need to do the actual error handling elsewhere.

Handling errors in Express, using Promises

Many examples on the internet don't show this, but you should always start a chain of promises
with Promise.try, and if it is within a function or callback, you should always return your promises
chain. Not doing so, will result in less reliable error handling and various other issues (eg. code
executing too soon).

Promisifying

e Promisifying functions and modules that use nodebacks (Node.js callbacks)

e An example of manually promisifying an EventEmitter

e Promisifying fs.exists (which is async, but doesn't follow the nodeback convention)

Functional (map, filter, reduce)

e Functional programming in Javascript: map, filter and reduce (an introduction, not

Bluebird-specific, but important to understand)

e (Synchronous) examples of map, filter, and reduce in Bluebird

e Example of using map for retrieving a (remote) list of URLs with bhttp

https://gist.github.com/joepie91/c6aa1ee552dcac821d03
https://gist.github.com/joepie91/211c8e99fb5a83b76079
https://gist.github.com/joepie91/791640557e3e5fd80861#promisetry
http://cryto.net/~joepie91/blog/2016/05/11/what-is-promise-try-and-why-does-it-matter/
http://cryto.net/~joepie91/blog/2016/05/11/what-is-promise-try-and-why-does-it-matter/
https://gist.github.com/joepie91/791640557e3e5fd80861#error-handling
https://gist.github.com/joepie91/c8d8cc4e6c2b57889446
https://gist.github.com/joepie91/2b62b735020e51b260abacaa133f48f0
https://gist.github.com/joepie91/b0c8f9a9309f5398080eab84482d58a4
https://gist.github.com/joepie91/f6a56acdae303e90e44a
https://www.npmjs.com/package/bluebird-tap-error
http://cryto.net/~joepie91/blog/2015/05/14/using-promises-bluebird-with-express/
https://gist.github.com/joepie91/791640557e3e5fd80861#promisifying
http://bluebirdjs.com/docs/api/promisification.html
https://gist.github.com/joepie91/3610c6e41bc654ccaadf
https://gist.github.com/joepie91/bbf495e044da043de2ba
https://gist.github.com/joepie91/791640557e3e5fd80861#functional-map-filter-reduce
http://cryto.net/~joepie91/blog/2015/05/04/functional-programming-in-javascript-map-filter-reduce/
https://gist.github.com/joepie91/34742045a40f7c48430e
https://gist.github.com/joepie91/4c125c45ee6c5ea0375f

Nesting

Example of retaining scope through nesting

Example of 'breaking out' of a chain through nesting

Example of a nested Promise.map
An example with increasing complexity, implementing an 'error-tolerant' Promise.map:

part 1, part 2, part 3

ES6 Promises

e Documentation on MDN

e Promise.try using ES6 Promises

e Promise.delay using ES6 Promises

Odds and ends

Some potentially useful snippets:

e Flattening an array of arrays, when using promises

You're unlikely to need any of these things, if you just stick with either Bluebird or ES6 promises:

e How to test whether a Promises implementation handles callbacks correctly

e Why this matters.

https://gist.github.com/joepie91/791640557e3e5fd80861#nesting
https://gist.github.com/joepie91/7d22af310ef68de4f507
https://gist.github.com/joepie91/c5f99a18975df0bf2f98
https://gist.github.com/joepie91/2aafe9e4830e0d0c8171
https://gist.github.com/joepie91/045a0238d0751cc7a72b
https://gist.github.com/joepie91/11e36819dcca49f54348
https://gist.github.com/joepie91/9593551b41f568a75b08
https://gist.github.com/joepie91/791640557e3e5fd80861#es6-promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://gist.github.com/joepie91/255250eeea8b94572a03
https://gist.github.com/joepie91/583db45f3a30552a7cd2
https://gist.github.com/joepie91/791640557e3e5fd80861#odds-and-ends
https://gist.github.com/joepie91/ac1ee270c6a506405d5f
https://gist.github.com/joepie91/48042173a6c9c4065399
https://gist.github.com/joepie91/98576de0fab7badec167

The Promises FAQ -
addressing the most
common gquestions and

misconceptions about
Promises

This article was originally published at

https://gist.github.com/joepie91/4c3al10629a4263a522e3bc4839a28c83. Nowadays

Promises are more widely understood and supported, and it's not as relevant as it once was,
but it's kept here for posterity.

By the way, I'm available for tutoring and code review :)

You'll find a table of contents on your left.

1. What Promises library should | use?

That depends a bit on your usecase.

My usual recommendation is Bluebird - it's robust, has good error handling and debugging facilities,
is fast, and has a well-designed API. The downside is that Bluebird will not correctly work in older

browsers (think Internet Explorer 8 and older), and when used in Browserified/Webpacked code, it
can sometimes add a lot to your bundle size.

ES6 Promises are gaining a lot of traction purely because of being "ES6", but in practice they are
just not very good. They are generally lacking standardized debugging facilities, they are missing

essential utilities such as Promise.try/promisify/promisifyAll, they cannot catch specific error types
(this is a big robustness issue), and so on.

https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#1-what-promises-library-should-i-use
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83
http://cryto.net/~joepie91/code-review.html

ES6 Promises can be useful in constrained scenarios (eg. older browsers with a polyfill, restricted
non-V8 runtimes, etc.) but | would not generally recommend them.

There are many other Promise implementations (Q, When]JS, etc.) - but frankly, I've not seen any
that are an improvement over either Bluebird or ES6 Promises in their respective 'optimal
scenarios'. I'd also recommend explicitly against Q because it is extremely slow and has a very
poorly designed API.

In summary: Use Bluebird, unless you have a very specific reason not to. In those very specific
cases, you probably want ES6 Promises.

2. How do | create a Promise myself?

Usually, you don't. Promises are not usually something you 'create' explicitly - rather, they're a
natural consequence of chaining together multiple operations. Take this example:

function getLinesFromSomething() {
return Promise.try(() => {
return bhttp.get("http://example.com/something.txt");
}).then((response) => {
return response.body.toString().split("\n");

1)

In this example, all of the following technically result in a new Promise:

e Promise.try(...)
e bhttp.get(...)
e The synchronous value from the .then callback, which gets converted automatically to a

resolved Promise (see question 5)

... but none of them are explicitly created as "a new Promise" - that's just the natural consequence
of starting a chain with Promise.try and then returning Promises or values from the callbacks.

There is one example to this, where you do need to explicitly create a new Promise - when
converting a different kind of asynchronous API to a Promises API, and even then you only need to

do this if promisify and friends don't work. This is explained in question 7.

3. How do | use new Promise?

https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#2-how-do-i-create-a-promise-myself
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#5-but-what-if-i-want-to-resolve-a-synchronous-result-or-error
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#7-how-do-i-make-this-non-promises-library-work-with-promises
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#3-how-do-i-use-new-promise

You don't, usually. In almost every case, you either need Promise.try, or some kind of

promisification method. Question 7 explains how you should do promisification, and when you do

need new Promise .

But when in doubt, don't use it. It's very error-prone.

4. How do | resolve a Promise?

You don't, usually. Promises are not something you need to 'resolve' manually - rather, you should
just return some kind of Promise, and let the Promise library handle the rest.

There's one exception here: when you're manually promisifying a strange APl using new Promise ,
you need to call resolve() or reject() for a successful and unsuccessful state, respectively. Make
sure to read question 3, though - you should almost never actually use new Promise .

5. But what if | want to resolve a
synchronous result or error?

You simply return it (if it's @ result) or throw it (if it's an error), from your .then callback. When
using Promises, synchronously returned values are automatically converted into a resolved Promise
, Whereas synchronously thrown errors are automatically converted into a rejected Promise. You
don't need to use Promise.resolve() Or Promise.reject() .

6. But what if it's at the start of a chain,
and I'm not in a .then callback yet?

Using Promise.try will make this problem not exist.

7. How do | make this non-Promises library
work with Promises?

That depends on what kind of API it is.

e Node.js-style error-first callbacks: Use Promise.promisify and/or Promise.promisifyAll

to convert the library to a Promises API. For ES6 Promises, use the es6-promisify and es6-

http://cryto.net/~joepie91/blog/2016/05/11/what-is-promise-try-and-why-does-it-matter/
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#7-how-do-i-make-this-non-promises-library-work-with-promises
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#4-how-do-i-resolve-a-promise
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#5-but-what-if-i-want-to-resolve-a-synchronous-result-or-error
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#6-but-what-if-its-at-the-start-of-a-chain-and-im-not-in-a-then-callback-yet
http://cryto.net/~joepie91/blog/2016/05/11/what-is-promise-try-and-why-does-it-matter/
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#7-how-do-i-make-this-non-promises-library-work-with-promises
http://bluebirdjs.com/docs/api/promisification.html
https://www.npmjs.com/package/es6-promisify
https://www.npmjs.com/package/es6-promisify

promisify-all libraries respectively. In Node.js, util.promisify can also be used.

e EventEmitters: It depends. Promises are explicitly meant to represent an operation that
succeeds or fails precisely once, so most EventEmitters cannot be converted to a Promise,
as they will have multiple results. Some exceptions exist; for example, the response event

when making a HTTP request - in these cases, use something like bluebird-events.

o setTimeout: Use Promise.delay instead, which comes with Bluebird.

o setinterval: Avoid setinterval entirely (this is why), and use a recursive Promise.delay
instead.

e Asynchronous callbacks with a single result argument, and no err : Use promisify-

simple-callback.

o A different Promises library: No manual conversion is necessary, as long as it is
compliant with the Promises/A+ specification (and nearly every implementation is). Make

sure to use Promise.try in your code, though.
e Synchronous functions: No manual conversion is necessary. Synchronous returns and

throws are automatically converted by your Promises library. Make sure to use Promise.try
in your code, though.

e Something else not listed here: You'll probably have to promisify it manually, using
new Promise . Make sure to keep the code within new Promise as minimal as possible - you
should have a function that only promisifies the API you intend to use, without doing
anything else. All further processing should happen outside of new Promise , once you
already have a Promise object.

8. How do | propagate errors, like with

if(err) return cb(err)?

You don't. Promises will propagate errors automatically, and you don't need to do anything special
for it - this is one of the benefits that Promises provide over error-first callbacks.

When using Promises, the only case where you need to .catch an error, is if you intend to handle it
- and you should always only catch the types of error you're interested in.

These two Gists (step 1, step 2) show how error propagation works, and how to .catch specific

types of errors.

9. How do | break out of a Promise chain
early?

https://www.npmjs.com/package/es6-promisify
https://www.npmjs.com/package/bluebird-events
http://bluebirdjs.com/docs/api/promise.delay.html
https://zetafleet.com/blog/2010/04/why-i-consider-setinterval-to-be-harmful.html
https://www.npmjs.com/package/promisify-simple-callback
https://www.npmjs.com/package/promisify-simple-callback
http://cryto.net/~joepie91/blog/2016/05/11/what-is-promise-try-and-why-does-it-matter/
http://cryto.net/~joepie91/blog/2016/05/11/what-is-promise-try-and-why-does-it-matter/
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#8-how-do-i-propagate-errors-like-with-iferr-return-cberr
https://gist.github.com/joepie91/2b62b735020e51b260abacaa133f48f0
https://gist.github.com/joepie91/b0c8f9a9309f5398080eab84482d58a4
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#9-how-do-i-break-out-of-a-promise-chain-early

You don't. You use conditionals instead. Of course, specifically for failure scenarios, you'd still throw
an error.

10. How do | convert a Promise to a
synchronous value?

You can't. Once you write asynchronous code, all of the 'surrounding' code also needs to be
asynchronous. However, you can just have a Promise chain in the 'parent code’', and return the
Promise from your own method.

For example:

function getUserFromDatabase(userld) {
return Promise.try(() => {
return database.table("users").where({id: userld}).get();
}).then((results) => {
if (results.length === 0) {
throw new MyCustomError("No users found with that ID");
} else {

return results[0];

/* Now, to *use* that getUserFromDatabase function, we need to have another Promise chain: */

Promise.try(() => {
// Here, we return the result of calling our own function. That return value is a Promise.
return getUserFromDatabase(42);

}).then((user) => {
console.log("The username of user 42 is:", user.username);

1)

(If you're not sure what Promise.try is or does, this article will explain it.)

https://gist.github.com/joepie91/c5f99a18975df0bf2f98
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#10-how-do-i-convert-a-promise-to-a-synchronous-value
http://cryto.net/~joepie91/blog/2016/05/11/what-is-promise-try-and-why-does-it-matter/

11. How do | save a value from a Promise
outside of the callback?

You don't. See question 10 above - you need to use Promises "all the way down".

12. How do | access previous results from
the Promise chain?

In some cases, you might need to access an earlier result from a chain of Promises, one that you
don't have access to anymore. A simple example of this scenario:

'use strict’;

/...

Promise.try(() => {
return database.query("users", {id: req.body.userld});
}).then((user) => {
return database.query("groups", {id: req.body.groupld});
}).then((group) => {
res.json({
user: user, // This is not possible, because “user’ is not in scope anymore.
group: group
1
1)

This is a fairly simple case - the user query and the group query are completely independent, and

they can be run at the same time. Because of that, we can use Promise.all to run them in parallel,
and return a combined Promise for both of their results:

'use strict';

...

Promise.try(() => {
return Promise.all([

database.query("users", {id: req.body.userld}),

https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#11-how-do-i-save-a-value-from-a-promise-outside-of-the-callback
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#10-how-do-i-convert-a-promise-to-a-synchronous-value
https://gist.github.com/joepie91/4c3a10629a4263a522e3bc4839a28c83#12-how-do-i-access-previous-results-from-the-promise-chain

database.query("groups", {id: req.body.groupld})
D;
}).spread((user, group) => {
res.json({
user: user, // Now it's possible!
group: group
ok
3

Note that instead of .then, we use .spread here. Promises only support a single result argument for
a .then, which is why a Promise created by Promise.all would resolve to an array of [user, group] in
this case. However, .spread is a Bluebird-specific variation of .then, that will automatically

"unpack" that array into multiple callback arguments. Alternatively, you can use ES6 object
destructuring to accomplish the same.

Now, the above example assumes that the two asynchronous operations are independent - that is,
they can run in parallel without caring about the result of the other operation. In some cases, you
will want to use the results of two operations that are dependent - while you still want to use the
results of both at the same time, the second operation also needs the result of the first operation to
work.

An example:

'use strict';

...

Promise.try(() => {

return getDatabaseConnection();
}).then((databaseConnection) => {

return databaseConnection.query("users", {id: req.body.id});
}).then((user) => {

res.json(user);

// This is not possible, because we don't have “databaseConnection” in scope anymore:
databaseConnection.close();

1);

In these cases, rather than using Promise.all , you'd add a level of nesting to keep something in
scope:

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

'use strict’;

/...

Promise.try(() => {
return getDatabaseConnection();
}).then((databaseConnection) => {

// We nest here, so that "databaseConnection™ remains in scope.

return Promise.try(() => {
return databaseConnection.query("users", {id: req.body.id});
}).then((user) => {

res.json(user);

databaseConnection.close(); // Now it works!
1)
1);

Of course, as with any kind of nesting, you should do it sparingly - and only when necessary for a
situation like this. Splitting up your code into small functions, with each of them having a single
responsibility, will prevent trouble with this.

Error handling (with
Promises)

This article was originally published at

https://gist.github.com/joepie91/c8d8cc4eb6c2b57889446. It only applies when using Promise
chaining syntax; when you use async / await , you are instead expected to use try / catch,
which unfortunately does not support error filtering.

There's roughly three types of errors:

1. Expected errors - eg. "URL is unreachable" for a link validity checker. You should handle
these in your code at the top-most level where it is practical to do so.

2. Unexpected errors - eg. a bug in your code. These should crash your process (yes,
really), they should be logged and ideally e-mailed to you, and you should fix them right
away. You should never catch them for any purpose other than to log the error, and even
then you should make the process crash.

3. User-facing errors - not really in the same category as the above two. While you can
represent them with error objects (and it's often practical to do so), they're not really
errors in the programming sense - rather, they're user feedback. When represented as
error objects, these should only ever be handled at the top-most point of a request - in the
case of Express, that would be the error-handling middleware that sends a HTTP status
code and a response.

Would | still need to use try/catch if | use
promises?

Sort of. Not the usual try / catch , but eg. Bluebird has a .try and .catch equivalent. It works like
synchronous try / catch , though - errors are propagated upwards automatically so that you can
handle them where appropriate.

Bluebird's try isn't identical to a standard JS try - it's more a 'start using Promises' thing, so that
you can also wrap synchronous errors. That's the magic of Promises, really - they let you handle
synchronous and asynchronous errors/values like they're one and the same thing.

https://gist.github.com/joepie91/c8d8cc4e6c2b57889446

Below is a relatively complex example, that uses a custom 'error filter' (predicate) function,
because filesystem errors have a name but not a special error type. The error filtering is only
available in Bluebird, by the way - 'native' Promises don't have the filtering.

/* UPDATED: This example has been changed to use the new object predicates, that were
* introduced in Bluebird 3.0. If you are using Bluebird 2.x, you will need to use the

* older example below, with the predicate function. */

var Promise = require("bluebird");

var fs = Promise.promisifyAll(require("fs"));

Promise.try(function(){

Oreturn fs.readFileAsync("./config.json").then(JSON.parse);

}).catch({code: "ENOENT"}, function(err){

/* Return an empty object. */

Oreturn {};

}).then(function(config) {

0/* “config® now either contains the JSON-parsed configuration file, or an empty object if no configuration file
existed. */

1);

If you are still using Bluebird 2.x, you should use predicate functions instead:

/* This example is ONLY for Bluebird 2.x. When using Bluebird 3.0 or newer, you should

* use the updated example above instead. */

var Promise = require("bluebird");

var fs = Promise.promisifyAll(require("fs"));

var NonExistentFilePredicate = function(err) {
(return (err.code === "ENOENT");
¥

Promise.try(function(){

Oreturn fs.readFileAsync("./config.json").then(JSON.parse);
}).catch(NonExistentFilePredicate, function(err){

/* Return an empty object. */

Oreturn {};

}).then(function(config) {

0/* “config® now either contains the JSON-parsed configuration file, or an empty object if no configuration file

existed. */

1);

Bluebird Promise.try using
ES6 Promises

This article was originally published at
https://gist.github.com/joepie91/255250eeea8b94572a03.

Note that this will only be equivalent to Promise.try if your runtime or ES6 Promise shim correctly
catches synchronous errors in Promise constructors.

If you are using the latest version of Node, this should be fine.

var Promise = require("es6-promise").Promise;

module.exports = function promiseTry(func) {
return new Promise(function(resolve, reject) {
resolve(func());

}

https://gist.github.com/joepie91/255250eeea8b94572a03

Please don't include minified
builds in your npm
packages!

This article was originally published at

https://gist.github.com/joepie91/04cc8329df231ea3e262dffe3d41f848.

There's quite a few libraries on npm that not only include the regular build in their package, but
also a minified build. While this may seem like a helpful addition to make the package more
complete, it actually poses a real problem: it becomes very difficult to audit these libraries.

The problem

You've probably seen incidents like the event-stream incident, where a library was compromised in

some way by an attacker. This sort of thing, also known as a "supply-chain attack", is starting to
become more and more common - and it's something that developers need to protect themselves
against.

One effective way to do so, is by auditing dependencies. Having at least a cursory look through
every dependency in your dependency tree, to ensure that there's nothing sketchy in there. While
it isn't going to be 100% perfect, it will detect most of these attacks - and not only is briefly
reviewing dependencies still faster than reinventing your own wheels, it'll also give you more
insight into how your application actually works under the hood.

But, there's a problem: a lot of packages include almost-duplicate builds, sometimes even minified
ones. It's becoming increasingly common to see a separate Common]S and ESM build, but in many
cases there's a minified build included too. And those are basically impossible to audit! Even with a
code beautifier, it's very difficult to understand what's really going on. But you can't ignore them
either, because if they are a part of the package, then other code can require them. So you have to
audit them.

There's a workaround for this, in the form of "reproducing" the build; taking the original (Git)
repository for the package which only contains the original code and not the minified code,
checking out the intended version, and then just running a build that creates the minified version,
which you can then compare to the one on npm. If they match, then you can assume that you only

https://gist.github.com/joepie91/04cc8329df231ea3e262dffe3d41f848#the-problem
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://gist.github.com/joepie91/04cc8329df231ea3e262dffe3d41f848

need to audit the original source in the Git repo.

Or well, that would be the case, if it weren't possible for the build tools to introduce malicious code
as well. Argh! Now you need to audit all of the build tools being used as well, at the specific
versions that are being used by each dependency. Basically, you're now auditing hundreds of build
stacks. This is a massive waste of time for every developer who wants to make sure there's nothing
sketchy in their dependencies!

All the while these minified builds don't really solve a problem. Which brings me to...

Why it's unnecessary to include minified
builds

As a library author, you are going to be dealing with roughly two developer demographics:

1. Those who just want a file they can include as a <script> tag, so that they can use your
library in their (often legacy) module-less code.

2. Those with a more modern development stack, including a package manager (npm) and
often also build tooling.

For the first demographic, it makes a lot of sense to provide a pre-minified build, as they are going
to directly include it in their site, and it should ideally be small. But, here's the rub: those are also
the developers who probably aren't using (or don't want to use) a package manager like npm!
There's not really a reason why their minified pre-build should exist on nom, specifically - you
might just as well offer it as a separate download.

For the second demographic, a pre-minified build isn't really useful at all. They probably already
have their own development stack that does minification (of their own code and dependencies),
and so they simply won't be using your minified build.

In short: there's not really a point to having a minified build in your nom package.

The solution

Simply put: don't include minified files in your npm package - distribute them separately, instead.
In most cases, you can just put it on your project's website, or even in the (Git) repository.

If you really do have some specific reason to need to distribute them through npm, at least put
them in a separate package (eg. yourpackage-minified), so that only those who actually use the
minified version need to add it to their dependency folder.

Ideally, try to only have a single copy of your code in your package at all - so also no separate
Common]JS and ESM builds, for example. Common])S works basically everywhere, and there's

https://gist.github.com/joepie91/04cc8329df231ea3e262dffe3d41f848#why-its-unnecessary-to-include-minified-builds
https://gist.github.com/joepie91/04cc8329df231ea3e262dffe3d41f848#the-solution

basically no reason to use ESM anyway, so this should be fine for most projects.

If you really must include an ESM version of your code, you should at least use a wrapping

approach instead of duplicating the code (note that this can be a breaking change!). But if you can,
please leave it out to make it easier for developers to understand what they are installing into their
project!

Anyone should be able to audit and review their dependencies, not just large companies with deep
pockets; and not including unnecessarily duplicated or obfuscated code into your packages will
help a long way towards that. Thanks!

https://wiki.slightly.tech/books/miscellaneous-notes/page/es-modules-are-terrible-actually
https://nodejs.org/api/esm.html#esm_approach_1_use_an_es_module_wrapper
https://nodejs.org/api/esm.html#esm_approach_1_use_an_es_module_wrapper

How to get the actual width
of an element in jQuery,
even with border-box: box-
sizing

‘ This article was originally published at https://gist.github.com/joepie91/5ffffefbf24dcfdb4477.

This is ridiculous, but per the jQuery documentation:

44 Note that .width() will always return the content width, regardless of the value of
the CSS box-sizing property. As of jQuery 1.8, this may require retrieving the CSS
width plus box-sizing property and then subtracting any potential border and
padding on each element when the element has box-sizing: border-box . To avoid
this penalty, use .css("width") rather than .width() .

function parsePx(input) {

(let match;

a

Of (match = /~([0-9+]1)px$/.exec(input)) {
[([return parseFloat(match[1]);

(0} else {

[Tthrow new Error("Value is not in pixels!");
0}

}

$.prototype.actualWidth = function() {
/* WTF, jQuery? */

Het isBorderBox = (this.css("box-sizing") === "border-box");

https://api.jquery.com/width/
https://gist.github.com/joepie91/5ffffefbf24dcfdb4477

(et width = this.width();

0
[if (isBorderBox) {
[[width = width

[T+ parsePx(this.css("padding-left"))

[ITH+ parsePx(this.css("padding-right"))
[(ITH+ parsePx(this.css("border-left-width"))
[T+ parsePx(this.css("border-right-width"));
0

a

(return width;

}

A survey of
unhandledRejection and
rejectionHandled handlers

This article was originally published at

https://qgist.github.com/joepie91/06cca7058a34398f168b08223b642162.

Bluebird (http://bluebirdjs.com/docs/api/error-management-configuration.html#global-rejection-

events)

e process.on//unhandledRejection : (Node.js) Potentially unhandled rejection.

e process.on//rejectionHandled : (Node.js) Cancel unhandled rejection, it was handled anyway.
¢ self.addEventListener//unhandledrejection : (WebWorkers) Potentially unhandled rejection.

e self.addEventListener//rejectionhandled : (WebWorkers) Cancel unhandled rejection, it was
handled anyway.

window.addEventListener//unhandledrejection : (Modern browsers, IE >= 9) Potentially
unhandled rejection.

window.addEventListener//rejectionhandled : (Modern browsers, IE >= 9) Cancel unhandled
rejection, it was handled anyway.

window.onunhandledrejection : (IE >= 6) Potentially unhandled rejection.

e window.onrejectionhandled : (IE >= 6) Cancel unhandled rejection, it was handled anyway.

When|S (https://github.com/cujojs/when/blob/3.7.0/docs/debug-api.md)

e process.on//unhandledRejection : (Node.js) Potentially unhandled rejection.

e process.on//rejectionHandled : (Node.js) Cancel unhandled rejection, it was handled anyway.
window.addEventListener//unhandledRejection : (Modern browsers, IE >= 9) Potentially
unhandled rejection.

window.addEventListener//rejectionHandled : (Modern browsers, IE >= 9) Cancel unhandled
rejection, it was handled anyway.

Spec (https://gist.github.com/benjamingr/0237932cee84712951a2)

e process.on//unhandledRejection : (Node.js) Potentially unhandled rejection.

http://bluebirdjs.com/docs/api/error-management-configuration.html#global-rejection-events
http://bluebirdjs.com/docs/api/error-management-configuration.html#global-rejection-events
https://github.com/cujojs/when/blob/3.7.0/docs/debug-api.md
https://gist.github.com/benjamingr/0237932cee84712951a2
https://gist.github.com/joepie91/06cca7058a34398f168b08223b642162

e process.on//rejectionHandled : (Node.js) Cancel unhandled rejection, it was handled anyway.

Spec (WHATWG: https://html.spec.whatwg.org/multipage/webappapis.html#unhandled-promise-

rejections)

window.addEventListener//unhandledrejection : (Browsers) Potentially unhandled rejection.
window.addEventListener//rejectionhandled : (Browsers) Cancel unhandled rejection, it was
handled anyway.

window.onunhandledrejection : (Browsers) Potentially unhandled rejection.

e window.onrejectionhandled : (Browsers) Cancel unhandled rejection, it was handled anyway.

ES6 Promises in Node.js (https://nodejs.org/api/process.html#process event rejectionhandled
onwards)

e process.on//unhandledRejection : Potentially unhandled rejection.
e process.on//rejectionHandled : Cancel unhandled rejection, it was handled anyway.

Yaku (https://github.com/ysmood/yaku#unhandled-rejection)

e process.on//unhandledRejection : (Node.js) Potentially unhandled rejection.
e process.on//rejectionHandled : (Node.js) Cancel unhandled rejection, it was handled anyway.
e window.onunhandledrejection : (Browsers) Potentially unhandled rejection.
e window.onrejectionhandled : (Browsers) Cancel unhandled rejection, it was handled anyway.

https://html.spec.whatwg.org/multipage/webappapis.html#unhandled-promise-rejections
https://html.spec.whatwg.org/multipage/webappapis.html#unhandled-promise-rejections
https://nodejs.org/api/process.html#process_event_rejectionhandled
https://github.com/ysmood/yaku#unhandled-rejection

Quill.js glossary

This article was originally published at

https://gist.github.com/joepie91/46241eflce89c74958da0fdd7d04eb55.

Since Quill.js doesn't seem to document its strange jargon-y terms anywhere, here's a glossary that
I've put together for it. No guarantees that it's correct! But I've done my best.

Quill - The WYSIWYG editor library
Parchment - The internal model used in Quill to implement the document tree

Scroll - A document, expressed as a tree, technically also a Blot (node) itself, specifically the root
node

Blot - A node in the document tree

Block (Blot) - A block-level node

Inline (Blot) - An inline (formatting) node

Text (Blot) - A node that contains only(!) raw text contents

Break (Blot) - A node that contains nothing, used as a placeholder where there is no actual
content

"a format" - A specific formatting attribute (width, height, is bold, ...)

.format(...) - The APl method that is used to set a formatting attribute on some selection

https://gist.github.com/joepie91/46241ef1ce89c74958da0fdd7d04eb55

Riot.js cheatsheet

This article was originally published at

https://qgist.github.com/joepie91/ed3a267de70210b46fb06dd57077827a.

Component styling

This section only applies to Riot.js 2.x. Since 3.x, all styles are scoped by default and
you can simply add a style tag to your component.

1. You can use a <style> tag within your tag. This style tag is applied globally by default.

2. You can scope your style tag to limit its effect to the component that you've defined it
in. Note that scoping is based on the tag name. There are two options:

3. Use the scoped attribute, eg. <style scoped> ... </style>

4. Use the :scope pseudo-selector, eg. <style> :scope { ... } </style>

5. You can change where global styles are 'injected' by having <style type="riot"></style>
somewhere in your <head> . This is useful for eg. controlling what styles are overridden.

Mounting

"Mounting" is the act of attaching a custom tag's template and behaviour to a specific element in
the DOM. The most common case is to mount all instances of a specific top-level tag, but there are
more options:

Mount all custom tags on the page: riot.mount("*")

Mount all instances of a specific tag name: riot.mount("app")
Mount a tag with a specific ID: riot.mount("#specific_element")
Mount using a more complex selector: riot.mount("foo, bar")

P wWwhH

Note that "child tags" (that is, custom tags that are specified within other custom tags) are
automatically mounted as-needed. You do not need to riot.mount them separately.

The simplest example:

<script>

// Load the "app’ tag's definition here somehow...

https://gist.github.com/joepie91/ed3a267de70210b46fb06dd57077827a#component-styling
https://gist.github.com/joepie91/ed3a267de70210b46fb06dd57077827a#mounting
https://gist.github.com/joepie91/ed3a267de70210b46fb06dd57077827a

document.addEventListener("DOMContentLoaded", (event) => {
riot.mount("app");
1

</script>

<app></app>

Tag logic

e Conditionally add to DOM: <your-tag if="{ something === true }"> ... </your-tag>

e Conditionally display: <your-tag show="{ something === true }"> ... </your-tag> (but the tag
always exists in the DOM)

e Conditionally hide: <your-tag hide="{ something === true }"> ... </your-tag> (but the tag

always exists in the DOM)

e For-each loop: <your-tag for="{ item in items }"> ... (you can access 'item' from within the tag) ...
</your-tag> (one instance of your-tag for each item in items)

e For-each loop of an object: <your-tag for="{ key, value in someObject }"> ... (you can access
'key' and 'value' from within the tag) ... </your-tag> (this is slow!)

All of the above also work on regular (ie. non-Riot) HTML tags.

If you need to add/hide/display/loop a group of tags, rather than a single one, you can wrap them in
a <virtual> pseudo-tag. This works with all of the above constructs. For example:

<virtual for="{item in items}">
<label>{item.label} </label>
<textarea>{item.defaultValue} </textarea>

</virtual>

https://gist.github.com/joepie91/ed3a267de70210b46fb06dd57077827a#tag-logic

Quick reference for checkit
validators

This article was originally published at
https://gist.github.com/joepie91/cd107b3a566264b28a3494689d73e589.

Presence

e exists - The field must exist, and not be undefined .
e required - The field must exist, and not be undefined , null or an empty string.
e empty - The field must be some kind of "empty". Things that are considered "empty" are
as follows:
o " (empty string)
o [1 (empty array)
o {} (empty object)
o Other falsey values

Character set

alpha - az, AZ

alphaNumeric - a-z, A-Z, 09
alphaUnderscore - a-z, A-Z, 0-9, _
alphabDash - a-z, Az, 09, , -

Value

Length-related validators may apply to both strings and arrays.

o exactLength: length - The value must have a length of exactly length .

e minLength: length - The value must have a length of at least length .

e maxLength: length - The value must have a length of at most length .

e contains: needle - The value must contain the specified needle (applies to both strings
and arrays).

https://gist.github.com/joepie91/cd107b3a566264b28a3494689d73e589#presence
https://gist.github.com/joepie91/cd107b3a566264b28a3494689d73e589#character-set
https://gist.github.com/joepie91/cd107b3a566264b28a3494689d73e589#value
https://gist.github.com/joepie91/cd107b3a566264b28a3494689d73e589

e accepted - Must be a value that indicates agreement - varies by language (defaulting to

en):
o en, fr, nl - "yes", "on", "1", 1, "true", true

oes- "yes", "on", "1", 1, "true", true, "si

oru- ||yeS|| , ||On|| , ||1|| , l , "true" , true , ”ﬂ,a"

Value (hnumbers)

Note that "numbers" refers to both Number-type values, and strings containing numeric values!

numeric - Must be a finite numeric value of some sort.

integer - Must be an integer value (either positive or negative).

natural - Must be a natural number (ie. an integer value of 0 or higher).
naturalNonZero - Must be a natural number, but higher than 0 (ie. an integer value of 1
or higher).

between: min : max - The value must numerically be between the min and max values
(exclusive).

range: min : max - The value must numerically be within the min and max values
(inclusive).

lessThan: maxValue - The value must numerically be less than the specified maxValue
(exclusive).

lessThanEqualTo: maxVvalue - The value must numerically be less than or equal to the
specified maxvalue (inclusive).

greaterThan: minvalue - The value must numerically be greater than the specified
minValue (exclusive).

greaterThanEqualTo: minvalue - The value must numerically be greater than or equal
to the specified minvalue (inclusive).

Relations to other fields

matchesField: field - The value in this field must equal the value in the specified other
field .

different: field - The value in this field must not equal the value in the specified other
field .

JavaScript types

NaN - Must be NaN.

null - Must be null

string - Must be a String .
number - Must be a Number .
array - Must be an Array .

https://gist.github.com/joepie91/cd107b3a566264b28a3494689d73e589#value-numbers
https://gist.github.com/joepie91/cd107b3a566264b28a3494689d73e589#relations-to-other-fields
https://gist.github.com/joepie91/cd107b3a566264b28a3494689d73e589#javascript-types

e plainObject - Must be a plain object (ie. object literal).
o date - Must be a Date object.

e function - Must be a Function .

e regExp - Must be a RegExp object.

e arguments - Must be an arguments object.

Format

e email - Must be a validly formatted e-mail address.

e luhn - Must be a validly formatted creditcard number (according to a Luhn regular
expression).

e url - Must be a validly formatted URL.

e ipv4 - Must be a validly formatted IPv4 address.

e ipv6 - Must be a validly formatted IPv6 address.

e uuid - Must be a validly formatted UUID.

e base64 - Must be a validly formatted base64 string.

https://gist.github.com/joepie91/cd107b3a566264b28a3494689d73e589#format

ES Modules are terrible,
actually

This post was originally published at
https://gist.github.com/joepie91/bca2fda868cle8b2c2caf76af7dfcad3, which was in turn

adapted from an earlier Twitter thread.

It's incredible how many collective developer hours have been wasted on pushing through the turd
that is ES Modules (often mistakenly called "ES6 Modules"). Causing a big ecosystem divide and
massive tooling support issues, for... well, no reason, really. There are no actual advantages to it.
At all.

It looks shiny and new and some libraries use it in their documentation without any explanation, so
people assume that it's the new thing that must be used. And then | end up having to explain to
them why, unlike Common]JS, it doesn't actually work everywhere yet, and may never do so. For

example, you can't import ESM modules from a Common]S file! (Update: I've released a module

that works around this issue.)

And then there's Rollup, which apparently requires ESM to be used, at least to get things like
treeshaking. Which then makes people believe that treeshaking is not possible with Common|S

modules. Well, it is - Rollup just chose not to support it.

And then there's Babel, which tried to transpile import / export to require / module.exports ,
sidestepping the ongoing effort of standardizing the module semantics for ESM, causing broken
imports and require("foo").default nonsense and spec design issues all over the place.

And then people go "but you can use ESM in browsers without a build step!"”, apparently not
realizing that that is an utterly useless feature because loading a full dependency tree over the
network would be unreasonably and unavoidably slow - you'd need as many roundtrips as there
are levels of depth in your dependency tree - and so you need some kind of build step anyway,
eliminating this entire supposed benefit.

And then people go "well you can statically analyze it better!", apparently not realizing that ESM
doesn't actually change any of the JS semantics other than the import / export syntax, and that the
import / export statements are equally analyzable as top-level require / module.exports .

"But in Common|S you can use those elsewhere too, and that breaks static analyzers!", | hear you
say. Well, yes, absolutely. But that is inherent in dynamic imports, which by the way, ESM also

https://github.com/sindresorhus/p-defer/issues/7
https://www.npmjs.com/package/fix-esm
https://github.com/indutny/webpack-common-shake
https://gist.github.com/joepie91/bca2fda868c1e8b2c2caf76af7dfcad3
https://twitter.com/joepie91/status/1254368447250694146

supports with its dynamic import() syntax. So it doesn't solve that either! Any static analyzer still
needs to deal with the case of dynamic imports somehow - it's just rearranging deck chairs on the
Titanic.

And then, people go "but now we at least have a standard module system!", apparently not
realizing that Common]S was literally that, the result of an attempt to standardize the various
competing module systems in JS. Which, against all odds, actually succeeded!

... and then promptly got destroyed by ESM, which reintroduced a split and all sorts of
incompatibility in the ecosystem, rather than just importing some updated variant of Common)S
into the language specification, which would have sidestepped almost all of these issues.

And while the initial Common]S standardization effort succeeded due to none of the competing
module systems being in particularly widespread use yet, Common]S is so ubiquitous in Javascript-
land nowadays that it will never fully go away. Which means that runtimes will forever have to
keep supporting two module systems, and developers will forever be paying the cost of the
interoperability issues between them.

But it's the future!

Is it really? The vast majority of people who believe they're currently using ESM, aren't even
actually doing so - they're feeding their entire codebase through Babel, which deftly converts all of
those snazzy import and export statements back into Common]S syntax. Which works. So what's
the point of the new module system again, if it all works with CommonJS anyway?

And it gets worse; import and export are designed as special-cased statements. Aside from the
obvious problem of needing to learn a special syntax (which doesn't quite work like object
destructuring) instead of reusing core language concepts, this is also a downgrade from
Common]S' require , which is a first-class expression due to just being a function call.

That might sound irrelevant on the face of it, but it has very real consequences. For example, the
following pattern is simply not possible with ESM:

const somelnitializedModule = require("module-name")(someOptions);

Or how about this one? Also no longer possible:

const app = express();
/...

app.use("/users", require("./routers/users"));

Having language features available as a first-class expression is one of the most desirable
properties in language design; yet for some completely unclear reason, ESM proponents decided to
remove that property. There's just no way anymore to directly combine an import statement with

https://gist.github.com/joepie91/bca2fda868c1e8b2c2caf76af7dfcad3#but-its-the-future

some other JS syntax, whether or not the module path is statically specified.

The only way around this is with await import , which would break the supposed static analyzer
benefits, only work in async contexts, and even then require weird hacks with parentheses to make
it work correctly.

It also means that you now need to make a choice: do you want to be able to use ESM-only
dependencies, or do you want to have access to patterns like the above that help you keep your
codebase maintainable? ESM or maintainability, your choice!

So, congratulations, ESM proponents. You've destroyed a successful userland specification, wasted
many (hundreds of?) thousands of hours of collective developer time, many hours of my own
personal unpaid time trying to support people with the fallout, and created ecosystem
fragmentation that will never go away, in exchange for... fuck all.

This is a disaster, and the only remaining way | see to fix it is to stop trying to make ESM happen,
and deprecate it in favour of some variant of Common)S modules being absorbed into the spec. It's
not too late yet; but at some point it will be.

A few notes on the
"Gathering weak npm
credentials" article

This article was originally published in 2017 at

https://gist.github.com/joepie91/828532657d23d512d76c1e68b101f436. Since then, npm
has implemented 2FA support in the registry, and was acquired by Microsoft through Github.

Yesterday, an article was released that describes how one person could obtain access to enough

packages on npm to affect 52% of the package installations in the Node.js ecosystem.
Unfortunately, this has brought about some comments from readers that completely miss the
mark, and that draw away attention from the real issue behind all this.

To be very clear: This (security) issue was caused by 1) poor password management on
the side of developers, 2) handing out unnecessary publish access to packages, and
most of all 3) poor security on the side of the npm registry.

With that being said, let's address some of the common claims. This is going to be slightly ranty,
because to be honest I'm rather disappointed that otherwise competent infosec people distract
from the underlying causes like this. All that's going to do is prevent this from getting fixed in other
language package registries, which almost certainly suffer from the same issues.

"This is what you get when you use small
dependencies, because there are such
long dependency chains"

This is very unlikely to be a relevant factor here. Don't forget that a key part of the problem here is
that publisher access is handed out unnecessarily; if the Node.js ecosystem were to consist of a
few large dependencies (that everybody used) instead of many small ones (that are only used by
those who actually need the entire dependency), you'd just end up with each large dependency
being responsible for a larger part of the 52%.

https://github.com/ChALkeR/notes/blob/master/Gathering-weak-npm-credentials.md
https://gist.github.com/joepie91/828532657d23d512d76c1e68b101f436#this-is-what-you-get-when-you-use-small-dependencies-because-there-are-such-long-dependency-chains
https://gist.github.com/joepie91/828532657d23d512d76c1e68b101f436

There's a potential point of discussion in that a modular ecosystem means that more different
groups of people are involved in the implementation of a given dependency, and that this could
provide for a larger (human) attack surface; however, this is a completely unexplored argument for
which no data currently exists, and this particular article does not provide sufficient evidence to
show it to be true.

Perhaps not surprisingly, the "it's because of small dependencies" argument seems to come
primarily from people who don't fully understand the Node.js dependency model and make a lot of
(incorrect) assumptions about its consequences, and who appear to take every opportunity to
blame things on "small dependencies" regardless of technical accuracy.

In short: No, this is not because of small dependencies. It would very likely happen with large
dependencies as well.

"See, that's why you should always lock
your dependency versions. This is why
semantic versioning is bad."

Aside from semantic versioning being a practice that's separate from automatically updating based
on a semver range, preventing automatic updates isn't going to prevent this issue either. The
problem here is with publish access to the modules, which is a completely separate concern from
"how the obtained access is misused".

In practice, most people who "lock dependency versions" seem to follow a practice of
"automatically merge any update that doesn't break tests" - which really is no different from just
letting semver ranges do their thing. Even if you do audit updates before you apply them (and let's
be realistic, how many people actually do this for every update?), it would be trivial to subtly
backdoor most of the affected packages due to their often aging and messy codebase, where one
more bit of strange code doesn't really stand out.

The chances of locked dependencies preventing exploitation are close to zero. Even if you do audit
your updates, it's relatively trivial for a competent developer to sneak by a backdoor. At the same
time, "people not applying updates" is a far bigger security issue than audit-less dependency
locking will solve.

All this applies to "vendoring in dependencies", too - vendoring in dependencies is no technically
different from pinning a version/hash of a dependency.

In short: No, dependency locking will not prevent exploitation through this vector. Unless you
have a strict auditing process (which you should, but many do not), you should not lock
dependency versions.

https://gist.github.com/joepie91/828532657d23d512d76c1e68b101f436#see-thats-why-you-should-always-lock-your-dependency-versions-this-is-why-semantic-versioning-is-bad

"That's why you should be able to add a
hash to your package.json, so that it
verifies the integrity of the dependency.

This solves a completely different and almost unimportant problem. The only thing that a package
hash will do, is assuring that everybody who installs the dependencies gets the exact same
dependencies (for a locked set of versions). However, the npm registry already does that - it
prevents republishing different code under an already-used version number, and even with
publisher access you cannot bypass that.

Package hashes also give you absolutely zero assurances about future updates; package hashes
are not signatures.

In short: This just doesn't even have anything to do with the credentials issue. It's totally
unrelated.

"See? This is why Node.js is bad."

Unfortunately plenty of people are conveniently using this article as an excuse to complain about
Node.js (because that's apparently the hip thing to do?), without bothering to understand what
happened. Very simply put: this issue is not in any way specific to Node.js. The issue here is
an issue of developers with poor password policies and poor registry access controls. It just so
happens that the research was done on npm.

As far as | am aware, this kind of research has not been carried out for any other language package
registries - but many other registries appear to be similarly poorly monitored and secured, and are
very likely to be subject to the exact same attack.

If you're using this as an excuse to complain about Node.js, without bothering to understand the
issue well enough to realize that it's a language-independent issue, then perhaps you should
reconsider exactly how well-informed your point of view of Node.js (or other tools, for that matter)
really is. Instead, you should take this as a lesson and prevent this from happening in other
language ecosystems.

In short: This has absolutely nothing to do with Node.js specifically. That's just where the research
happens to be done. Take the advice and start looking at other language package registries, to
ensure they are not vulnerable to this either.

So then how should | fix this?

https://gist.github.com/joepie91/828532657d23d512d76c1e68b101f436#thats-why-you-should-be-able-to-add-a-hash-to-your-packagejson-so-that-it-verifies-the-integrity-of-the-dependency
https://gist.github.com/joepie91/828532657d23d512d76c1e68b101f436#see-this-is-why-nodejs-is-bad
https://gist.github.com/joepie91/828532657d23d512d76c1e68b101f436#so-then-how-should-i-fix-this

1. Demand from npm Inc. that they prioritize implementing 2FA immediately, actively
monitor for incidents like this, and generally implement all the mitigations suggested in

the article. It's really not reasonable how poorly monitored or secured the registry is,
especially given that it's operated by a commercial organization, and it's been around for
a long time.

2. If you have an npm account, follow the instructions here.

3. Carry out or encourage the same kind of research on the package registry for your
favorite language. It's very likely that other package registries are similarly insecure and
poorly monitored.

Unfortunately, as a mere consumer of packages, there's nothing you can do about this other than
demanding that npm Inc. gets their registry security in order. This is fundamentally an
infrastructure problem.

https://github.com/ChALkeR/notes/blob/master/Gathering-weak-npm-credentials.md#how-things-could-be-further-improved-on-the-npm-side
https://github.com/ChALkeR/notes/blob/master/Gathering-weak-npm-credentials.md#what-users-should-do-on-this

