
NixOS
Setting up Bookstack
A *complete* listing of operators in Nix, and their predence.
Setting up Hydra
Stepping through builder steps in your custom packages
Using dependencies in your build phases
Source roots that need to be renamed before they can be used
Error: `error: cannot coerce a function to a string`
`buildInputs` vs. `nativeBuildInputs`?
QMake ignores my `PREFIX`/`INSTALL_PREFIX`/etc. variables!
Useful tools for working with NixOS
Proprietary AMD drivers (fglrx) causing fatal error in i387.h
Installing a few packages from `master`
GRUB2 on UEFI
Unblock ports in the firewall on NixOS
Guake doesn't start because of a GConf issue
FFMpeg support in youtube-dl
An incomplete rant about the state of the documentation for NixOS

Setting up Bookstack
Turned out to be pretty simple.

Server was running an old version of NixOS, 23.05, where MySQL doesn't work in a VPS (anymore).
Upgraded the whole thing to 24.11 and then it Just Worked.

Afterwards, run:

... in a terminal on the server to set up the primary administrator account. Done.

deployment.secrets.bookstack-app-key = {
	source = "../private/bookstack/app-key";
	destination = "/var/lib/bookstack/app-key";
	owner = { user = "bookstack"; group = "bookstack"; };
	permissions = "0700";
};

services.bookstack = {
	enable = true;
	hostname = "wiki.slightly.tech";
	maxUploadSize = "10G";
	appKeyFile = "/var/lib/bookstack/app-key";
	nginx = { enableACME = true; forceSSL = true; };
	database = { createLocally = true; };
};

bookstack bookstack:create-admin

A *complete* listing of
operators in Nix, and their
predence.

Lower precedence means a stronger binding; ie. this list is sorted from strongest to weakest
binding, and in the case of equal precedence between two operators, the associativity decides the
binding.

Pre
c

Abbreviati
on

Example Ass
oc

Description

1 SELECT e . attrpath [or def] none Select attribute denoted by the attribute path attrpath from set
e . (An attribute path is a dot-separated list of attribute names.)

If the attribute doesn’t exist, return default if provided,
otherwise abort evaluation.

2 APP e1 e2 left Call function e1 with argument e2 .

3 NEG -e none Numeric negation.

4 HAS_ATTR e ? attrpath none Test whether set e contains the attribute denoted by attrpath ;
return true or false.

5 CONCAT e1 ++ e2 right List concatenation.

6 MUL e1 * e2 left Numeric multiplication.

6 DIV e1 / e2 left Numeric division.

7 ADD e1 + e2 left Numeric addition, or string concatenation.

7 SUB e1 - e2 left Numeric subtraction.

8 NOT !e left Boolean negation.

This article was originally published at
https://gist.github.com/joepie91/c3c047f3406aea9ec65eebce2ffd449d.

The information in this article has since been absorbed into the official Nix manual. It is kept
here for posterity. It may be outdated by the time you read this.

https://gist.github.com/joepie91/c3c047f3406aea9ec65eebce2ffd449d

Pre
c

Abbreviati
on

Example Ass
oc

Description

9 UPDATE e1 // e2 right Return a set consisting of the attributes in e1 and e2 (with the
latter taking precedence over the former in case of equally
named attributes).

10 LT e1 < e2 left Less than.

10 LTE e1 <= e2 left Less than or equal.

10 GT e1 > e2 left Greater than.

10 GTE e1 >= e2 left Greater than or equal.

11 EQ e1 == e2 none Equality.

11 NEQ e1 != e2 none Inequality.

12 AND e1 && e2 left Logical AND.

13 OR e1 || e2 left Logical OR.

14 IMPL e1 -> e2 none Logical implication (equivalent to !e1 || e2).

Setting up Hydra

Just some notes from my attempt at setting up Hydra.

Setting up on NixOS
No need for manual database creation and all that; just ensure that your PostgreSQL service is
running (services.postgresql.enable = true;), and then enable the Hydra service (services.hydra.enable).
The Hydra service will need a few more options to be set up, below is my configuration for it:

Database and user creation and all that will happen automatically. You'll only need to run hydra-init
and then hydra-create-user to create the first user. Note that you may need to run these scripts as
root if you get permission or filesystem errors.

Can't run hydra-* utility scripts / access the
web interface due to database errors
If you already have a services.postgresql.authentication configuration line from elsewhere (either
another service, or your own configuration.nix), it may be conflicting with the one specified in the
Hydra service. There's an open issue about it here.

This article was originally published at
https://gist.github.com/joepie91/c26f01a787af87a96f967219234a8723 in 2017. The NixOS
ecosystem constantly changes, and it may not be relevant anymore by the time you read
this article.

 services.hydra = {
 enable = true;
 port = 3333;
 hydraURL = "http://localhost:3333/";
 notificationSender = "hydra@cryto.net";
 useSubstitutes = true;
 minimumDiskFree = 20;
 minimumDiskFreeEvaluator = 20;
 };

https://gist.github.com/joepie91/c26f01a787af87a96f967219234a8723#setting-up-on-nixos
https://gist.github.com/joepie91/c26f01a787af87a96f967219234a8723#cant-run-hydra--utility-scripts--access-the-web-interface-due-to-database-errors
https://github.com/NixOS/nixpkgs/issues/32063
https://gist.github.com/joepie91/c26f01a787af87a96f967219234a8723

Can't login
After running hydra-create-user in your shell, you may be running into the following error in the web
interface: "Bad username or password."

When this occurs, it's likely because the hydra-* utility scripts stored your data in a local SQLite
database, rather than the PostgreSQL database you configured. As far as I can tell, this happens
because of some missing HYDRA_* environment variables that are set through /etc/profile , which is
only applied on your next login. Simply opening a new shell is not enough.

As a workaround until your next login/boot, you can run the following to obtain the command you
need to run to apply the new environment variables in your current shell:

... and then run the resulting command (including the dot at the start, if there is one!) in the shell
you intend to run the hydra-* scripts in. If you intend to run them as root, make sure you run the
set-environment script in the root shell - using sudo will make the environment variables get lost, so
you'll be stuck with the same issue as before.

cat /etc/profile | grep set-environment

https://gist.github.com/joepie91/c26f01a787af87a96f967219234a8723#cant-login

Stepping through builder
steps in your custom
packages

1. Create a temporary building folder in your repository (or elsewhere) and enter it: mkdir
test && cd test

2. nix-shell ../main.nix -A packagename (assuming the entry point for your custom repository is
main.nix in the parent directory)

3. Run the phases individually by entering their name (for a default phase) or doing
something like eval "$buildPhase" (for an overridden phase) in the Nix shell - a summary of
the common ones: unpackPhase , patchPhase , configurePhase , buildPhase , checkPhase ,
installPhase , fixupPhase , distPhase

More information about these phases can be found here. If you use a different builder, you may
have a different set of phases.

Don't forget to clear out your test folder after every attempt!

This article was originally published at
https://gist.github.com/joepie91/b0041188c043259e6e1059d026eff301.

https://nixos.org/releases/nixpkgs/nixpkgs-0.12/manual/#ssec-stdenv-phases
https://gist.github.com/joepie91/b0041188c043259e6e1059d026eff301

Using dependencies in your
build phases

You can just use string interpolation to add a dependency path to your script. For example:

This article was originally published at
https://gist.github.com/joepie91/b0041188c043259e6e1059d026eff301.

{
 # ...
 preBuildPhase = ''
 ${grunt-cli}/bin/grunt prepare
 '';
 # ...
}

https://gist.github.com/joepie91/b0041188c043259e6e1059d026eff301

Source roots that need to be
renamed before they can be
used

Some applications (such as Brackets) are very picky about the directory name(s) of your unpacked
source(s). In this case, you might need to rename one or more source roots before cd ing into
them.

To accomplish this, do something like the following:

This keeps Nix from trying to move into the source directories immediately, by explicitly pointing it
at the current (ie. top-most) directory of the environment.

This article was originally published at
https://gist.github.com/joepie91/b0041188c043259e6e1059d026eff301.

{
 # ...
 sourceRoot = ".";

 postUnpack = ''
 mv brackets-release-${version} brackets
 mv brackets-shell-${shellBranch} brackets-shell
 cd brackets-shell;
 '';
 # ...
}

https://github.com/adobe/brackets-shell/wiki/Building-brackets-shell#general-prerequisites
https://gist.github.com/joepie91/b0041188c043259e6e1059d026eff301

Error: `error: cannot coerce
a function to a string`

Probably caused by a syntax ambiguity when invoking functions within a list. For example, the
following will throw this error:

This can be solved by adding parentheses around the invocations:

This article was originally published at
https://gist.github.com/joepie91/b0041188c043259e6e1059d026eff301.

{
 # ...
 srcs = [
 fetchurl {
 url = "https://github.com/adobe/brackets-shell/archive/${shellBranch}.tar.gz";
 sha256 = shellHash;
 }
 fetchurl {
 url = "https://github.com/adobe/brackets/archive/release-${version}.tar.gz";
 sha256 = "00yc81p30yamr86pliwd465ag1lnbx8j01h7a0a63i7hsq4vvvvg";
 }
];
 # ...
}

{
 # ...
 srcs = [
 (fetchurl {
 url = "https://github.com/adobe/brackets-shell/archive/${shellBranch}.tar.gz";
 sha256 = shellHash;
 })
 (fetchurl {
 url = "https://github.com/adobe/brackets/archive/release-${version}.tar.gz";
 sha256 = "00yc81p30yamr86pliwd465ag1lnbx8j01h7a0a63i7hsq4vvvvg";
 })
];
 # ...
}

https://gist.github.com/joepie91/b0041188c043259e6e1059d026eff301

`buildInputs` vs.
`nativeBuildInputs`?

More can be found here.

buildInputs: Dependencies for the (target) system that your built package will eventually
run on.
nativeBuildInputs: Dependencies for the system where the build is being created.

The difference only really matters when cross-building - when building for your own system, both
sets of dependencies will be exposed as nativeBuildInputs .

This article was originally published at
https://gist.github.com/joepie91/b0041188c043259e6e1059d026eff301.

https://github.com/NixOS/nixpkgs/issues/4855#issuecomment-61966503
https://gist.github.com/joepie91/b0041188c043259e6e1059d026eff301

QMake ignores my
`PREFIX`/`INSTALL_PREFIX`/
etc. variables!

QMake does not have a standardized configuration variable for installation prefixes - PREFIX and
INSTALL_PREFIX only work if the project files for the software you're building specify it explicitly.

If the project files have a hardcoded path, there's still a workaround to install it in $out anyway,
without source code or project file patches:

This INSTALL_ROOT environment variable will be picked up and used by make install , regardless of
the paths specified by QMake.

This article was originally published at
https://gist.github.com/joepie91/b0041188c043259e6e1059d026eff301.

{
 # ...
 preInstall = "export INSTALL_ROOT=$out";
 # ...
}

https://gist.github.com/joepie91/b0041188c043259e6e1059d026eff301

Useful tools for working with
NixOS

Online things
Package search
Options search
A list of channels, and when they were last updated

Development tooling
A .drv file parser in JS
rnix, a Nix (language) parser in Rust

(Reference) documentation
Nix manual
A complete list of Nix operators (the list in the official manual is incomplete)
nixpkgs manual
NixOS manual
Official NixOS wiki

Tutorials and examples
Step-by-step walkthrough of the Nix language

This article was originally published at
https://gist.github.com/joepie91/67316a114a860d4ac6a9480a6e1d9c5c. Some links have
been removed, as they no longer exist, or are no longer updated.

https://gist.github.com/joepie91/67316a114a860d4ac6a9480a6e1d9c5c#online-things
https://nixos.org/nixos/packages.html
https://nixos.org/nixos/options.html
https://status.nixos.org/
https://gist.github.com/joepie91/67316a114a860d4ac6a9480a6e1d9c5c#development-tooling
https://www.npmjs.com/package/drv
https://gitlab.com/jD91mZM2/rnix
https://gist.github.com/joepie91/67316a114a860d4ac6a9480a6e1d9c5c#reference-documentation
https://nixos.org/nix/manual/
https://wiki.slightly.tech/books/miscellaneous-notes/page/a-complete-listing-of-operators-in-nix-and-their-predence
https://nixos.org/nixpkgs/manual/
https://nixos.org/nixos/manual/
https://wiki.nixos.org/
https://gist.github.com/joepie91/67316a114a860d4ac6a9480a6e1d9c5c#tutorials-and-examples
https://medium.com/@MrJamesFisher/nix-by-example-a0063a1a4c55
https://gist.github.com/joepie91/67316a114a860d4ac6a9480a6e1d9c5c

A shorter primer of the Nix language (probably a better option if you already know
another programming language)
Nix pills (a series of articles about different aspects of Nix; ongoing work on a compact
edition can be found here)
Example configurations
Hardware configurations (includes configurations for dealing with quirks on specific
hardware and models)

Community and support
The Nix forum
The Matrix space

Miscellaneous notes and troubleshooting
My Nix and NixOS notes: see the rest of the articles in this chapter!
My Hydra setup notes

http://www.binaryphile.com/nix/2018/07/22/nix-language-primer.html
https://lethalman.blogspot.nl/2014/07/nix-pill-1-why-you-should-give-it-try.html
https://github.com/deepfire/nix-pills-compact-edition
https://nixos.wiki/wiki/Configuration_Collection
https://github.com/NixOS/nixos-hardware
https://gist.github.com/joepie91/67316a114a860d4ac6a9480a6e1d9c5c#community-and-support
https://discourse.nixos.org/
https://matrix.to/#/#community:nixos.org
https://gist.github.com/joepie91/67316a114a860d4ac6a9480a6e1d9c5c#miscellaneous-notes-and-troubleshooting
https://wiki.slightly.tech/books/miscellaneous-notes/page/setting-up-hydra

Proprietary AMD drivers
(fglrx) causing fatal error in
i387.h

If you get this error:

... it's because the drivers are not compatible with your current kernel version. I've worked around
it by adding this to my configuration.nix , to switch to a 4.1 kernel:

This article was originally published at
https://gist.github.com/joepie91/ce9267788fdcb37f5941be5a04fcdd0f. It should no longer be
applicable, but is preserved here in case a similar issue reoccurs in the future.

/tmp/nix-build-ati-drivers-15.7-4.4.18.drv-0/common/lib/modules/fglrx/build_mod/2.6.x/firegl_public.c:194:22:
fatal error: asm/i387.h: No such file or directory

{
 # ...
 boot.kernelPackages = plgs.linuxPackages_4_1;
 # ...
}

https://gist.github.com/joepie91/ce9267788fdcb37f5941be5a04fcdd0f

Installing a few packages
from `master`

1. git clone https://github.com/NixOS/nixpkgs.git /etc/nixos/nixpkgs-master
2. Edit your /etc/nixos/configuration.nix like this:

This article was originally published at
https://gist.github.com/joepie91/ce9267788fdcb37f5941be5a04fcdd0f.

You probably want to install from unstable instead of master , and you probably want to do it
differently than described here (eg. importing from URL or specifying it as a Flake). This
documentation is kept here for posterity, as it is still helpful to understand how to import a
local copy of a nixpkgs into your configuration.

{ config, pkgs, ... }:

let
 nixpkgsMaster = import ./nixpkgs-master {};

 stablePackages = with pkgs; [
 # This is where your packages from stable nixpkgs go
];

 masterPackages = with nixpkgsMaster; [
 # This is where your packages from `master` go
 nodejs-6_x
];
in {
 # This is where your normal config goes, we've just added a `let` block

 environment = {
 # ...

 systemPackages = stablePackages ++ masterPackages;
 };

 # ...
}

https://gist.github.com/joepie91/ce9267788fdcb37f5941be5a04fcdd0f

GRUB2 on UEFI

This works fine. You need your boot section configured like this:

This article was originally published at
https://gist.github.com/joepie91/ce9267788fdcb37f5941be5a04fcdd0f.

These instructions are most likely outdated. They are kept here for posterity.

{
 # ...
 boot = {
 loader = {
 gummiboot.enable = false;

 efi = {
 canTouchEfiVariables = true;
 };

 grub = {
 enable = true;
 device = "nodev";
 version = 2;
 efiSupport = true;
 };
 };
 };
 # ...
}

https://gist.github.com/joepie91/ce9267788fdcb37f5941be5a04fcdd0f

Unblock ports in the firewall
on NixOS

The firewall is enabled by default. This is how you open a port:

This article was originally published at
https://gist.github.com/joepie91/ce9267788fdcb37f5941be5a04fcdd0f.

{
 # ...
 networking = {
 # ...

 firewall = {
 allowedTCPPorts = [24800];
 };
 };
 # ...
}

https://gist.github.com/joepie91/ce9267788fdcb37f5941be5a04fcdd0f

Guake doesn't start because
of a GConf issue

1. Follow the instructions here.
2. Run the following to set up the GConf schema for Guake: gconftool-2 --install-schema-file

$(readlink $(which guake) | grep -Eo '\/nix\/store\/[^\/]+\/')"share/gconf/schemas/guake.schemas" . This
will not work if you have changed your Nix store path - in that case, modify the command
accordingly.

You may need to re-login to make the changes apply.

This article was originally published at
https://gist.github.com/joepie91/ce9267788fdcb37f5941be5a04fcdd0f. It may or may not
still be relevant.

From nixpkgs: GNOME's GConf implements a system-wide registry (like on Windows) that
applications can use to store and retrieve internal configuration data. That concept is
inherently impure, and it's very hard to support on NixOS.

https://web.archive.org/web/20160829175357/https://nixos.org/wiki/Solve_GConf_errors_when_running_GNOME_applications
https://gist.github.com/joepie91/ce9267788fdcb37f5941be5a04fcdd0f

FFMpeg support in youtube-
dl

Based on this post:

(To understand what stablePackages is here, see this entry.)

This article was originally published at
https://gist.github.com/joepie91/ce9267788fdcb37f5941be5a04fcdd0f. It may no longer be
necessary.

{
 # ...
 stablePackages = with pkgs; [
 # ...
 (python35Packages.youtube-dl.override {
 ffmpeg = ffmpeg-full;
 })
 # ...
];
 # ...
}

https://github.com/NixOS/nixpkgs/issues/5236#issuecomment-139865161
https://wiki.slightly.tech/books/miscellaneous-notes/page/installing-a-few-packages-from-master
https://gist.github.com/joepie91/ce9267788fdcb37f5941be5a04fcdd0f

An incomplete rant about
the state of the
documentation for NixOS

I've now been using NixOS on my main system for a few months, and while I appreciate the
technical benefits a lot, I'm constantly running into walls concerning documentation and general
problem-solving. After discussing this briefly on IRC in the past, I've decided to post a rant / essay /
whatever-you-want-to-call-it here.

An upfront note
My frustration about these issues has built up considerably over the past few months, moreso
because I know that from a technical perspective it all makes a lot of sense, and there's a lot of
potential behind NixOS. However, I've found it pretty much impenetrable on a getting-stuff-done
level, because the documentation on many things is either poor or non-existent.

While my goal here is to get things fixed rather than just complaining about them, that frustration
might occasionally shine through, and so I might come across as a bit harsh. This is not my
intention, and there's no ill will towards any of the maintainers or users. I just want to address the
issues head-on, and get them fixed effectively.

To address any "just send in a PR" comments ahead of time: while I do know how to write good
documentation (and I do so on a regular basis), I still don't understand much of how NixOS and

This article was originally published at
https://gist.github.com/joepie91/5232c8f1e75a8f54367e5dfcfd573726.

Historical note: I wrote this rant in 2017, originally intended to be posted on the NixOS
forums. This never ended up happening, as discussing the (then private) draft already
started driving changes to the documentation approach. The documentation has improved
since this was written, however some issues remain to this day at the time of writing this
remark, in 2024. The rant ends abruptly, because I never ended up finishing it - but it still
contains a lot of useful points regarding documentation quality, and so I am preserving it
here.

https://gist.github.com/joepie91/5232c8f1e75a8f54367e5dfcfd573726#an-upfront-note
https://gist.github.com/joepie91/95ed77b71790442b7e61
https://gist.github.com/joepie91/5232c8f1e75a8f54367e5dfcfd573726

nixpkgs are structured, exactly because the documentation is so poorly accessible. I couldn't fix
the documentation myself if I wanted to, simply because I don't have the understanding required to
do so, and I'm finding it very hard to obtain that understanding.

One last remark: throughout the rant, I'll be posing a number of questions. These are not
necessarily all questions that I still have, as I've found the answer to several of them after hours of
research - they just serve to illustrate the interpretation of the documentation from the point of
view of a beginner, so there's no need to try and answer them in this thread. These are just the
type of questions that should be anticipated and answered in the documentation.

Types of documentation
Roughly speaking, there are three types of documentation for anything programming-related:

1. Reference documentation
2. Conceptual documentation
3. Tutorials

In the sections below, "tooling" will refer to any kind of to-be-documented thing - a function, an API
call, a command-line tool, and so on.

Reference documentation
Reference documentation is intended for readers who are already familiar with the tooling that is
being documented. It typically follows a rigorous format, and defines things such as function
names, arguments, return values, error conditions, and so on. Reference documentation is
generally considered the "single source of truth" - whatever behaviour is specified there, is what
the tooling should actually do.

Some examples of reference documentation:

https://nodejs.org/api/querystring.html
https://doc.rust-lang.org/std/

Reference documentation generally assumes all of the following:

The reader understands the purpose of the tooling
The reader understands the concepts that the tooling uses or implements
The reader understands the relation of the tooling to other tooling

Conceptual documentation
Conceptual documentation is intended for readers who do not yet understand the tooling, but are
already familiar with the environment (language, shell, etc.) in which it's used.

https://gist.github.com/joepie91/5232c8f1e75a8f54367e5dfcfd573726#types-of-documentation
https://gist.github.com/joepie91/5232c8f1e75a8f54367e5dfcfd573726#reference-documentation
https://nodejs.org/api/querystring.html
https://doc.rust-lang.org/std/
https://gist.github.com/joepie91/5232c8f1e75a8f54367e5dfcfd573726#conceptual-documentation

Some examples of conceptual documentation:

http://cryto.net/~joepie91/blog/2016/05/11/what-is-promise-try-and-why-does-it-matter/
https://hughfdjackson.com/javascript/prototypes-the-short(est-possible)-story/
https://doc.rust-lang.org/stable/book/the-stack-and-the-heap.html

Good conceptual documentation doesn't make any assumptions about the background of the
reader or what other tooling they might already know about, and explicitly indicates any prior
knowledge that's required to understand the documentation - preferably including a link to
documentation about those "dependency topics".

Tutorials
Tutorials can be intended for two different groups of readers:

1. Readers who don't yet understand the environment (eg. "Introduction to Bash syntax")
2. Readers who don't want to understand the environment (eg. "How to build a full-stack

web application")

While I would consider tutorials pandering to the second category actively harmful, they're a thing
that exists nevertheless.

Some examples of tutorials:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://zellwk.com/blog/crud-express-mongodb/
http://www.freewebmasterhelp.com/tutorials/phpmysql

Tutorials don't make any assumptions about the background of the reader... but they have to be
read from start to end. Starting in the middle of a tutorial is not likely to be useful, as tutorials are
more designed to "hand-hold" the reader through the process (without necessarily understanding
why things work how they work).

The current state of the Nix(OS)
documentation
Unfortunately, the NixOS documentation is currently lacking in all three areas.

The official Nix, NixOS and nixpkgs manuals attempt to be all three types of documentation -
tutorials (like this one), conceptual documentation (like this), and reference documentation (like
this). The wiki sort of tries to be conceptual documentation (like here), and does so a little better

http://cryto.net/~joepie91/blog/2016/05/11/what-is-promise-try-and-why-does-it-matter/
https://hughfdjackson.com/javascript/prototypes-the-short(est-possible)-story/
https://doc.rust-lang.org/stable/book/the-stack-and-the-heap.html
https://gist.github.com/joepie91/5232c8f1e75a8f54367e5dfcfd573726#tutorials
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://zellwk.com/blog/crud-express-mongodb/
http://www.freewebmasterhelp.com/tutorials/phpmysql
https://gist.github.com/joepie91/5232c8f1e75a8f54367e5dfcfd573726#the-current-state-of-the-nixos-documentation
https://nixos.org/nixos/manual/index.html#ch-installation
https://nixos.org/nix/manual/#sec-profiles
https://nixos.org/nix/manual/#part-command-ref
https://nixos.org/wiki/Anatomy_of_Nix_Package_Management

than the manual, but... the wiki is being shut down, and it's still far from complete.

The most lacking aspect of the NixOS documentation is currently the conceptual documentation.
What is a "derivation"? Why does it exist? How does it relate to what I, as a user, want to do? How
is the Nix store structured, and what guarantees does this give me? What is the difference between
/etc/nixos/configuration.nix and ~/.nixpkgs/config.nix , and can they be used interchangeably? Is nixpkgs
just a set of packages, or does it also include tooling? Which tooling is provided by Nix the package
manager, which is provided by NixOS, and which is provided by nixpkgs? Is this different on non-
NixOS, and why?

Most of the official documentation - including the wiki - is structured more like a very extensive
tutorial. You're told, step by step, what to do... but not why any of it matters, what it's for, or how
to use these techniques in different situations. This wiki section is a good example. What does
overrideDerivation actually do? What's the difference with override ? What's the difference between
'attributes' and 'arguments'? Why is there a random link about the Oracle JDK there? Is the src
completely overridden, or just the attributes that are specified there? What if I want to reevaluate
all the other attributes based on the changes that I've made - for example, regenerating the name
attribute based on a changed version attribute? Are any of these tools useful in other scenarios
that aren't directly addressed here?

The "Nix pills" sort of try to address this lack of conceptual information, and are quite
informational, but they have their problems too. They are not clearly structured (where's the index
of all the articles?), the text formatting can be hard to read, and it is still half of a tutorial - it can be
hard to understand later pills without having read earlier ones, because they're not fully self-
contained. On top of that, they're third-party documentation and not part of the official
documentation.

The official manuals have a number of formatting/structural issues as well. The single-page format
is frankly horrible for navigating through - finding anything on the page is difficult, and following
links to other things gets messy fast. Because it's all a single page, every tab has the exact same
title, it's easy to scroll past the section you were reading, and so on. Half the point of the web is to
have hyperlinked content across multiple documents, but the manuals completely forgo that and
create a really poor user experience. It's awful for search engines too, because no matter what you
search for, you always end up on the exact same page.

Another problem is the fact that I have to say "manuals" - there are multiple manuals, and the
distinction between them is not at all clear. Because it's unclear what functionality is provided by
what part of the stack, it usually becomes a hunt of going through all three manuals ctrl+F'ing for
some keywords, and hoping that you will run into the thing you're looking for. Then once you
(hopefully) do, you have to be careful not to accidentally scroll away from it and lose your
reference. There's really no good reason for this separation; it just makes it harder to cross-
reference between different parts of the stack, and most users will be using all of them anyway.

The manual, as it is, is not a viable format. While I understand that the wiki had issues with
outdated information, it's still a far better structure than a set of single-page manuals. I'll go into

https://nixos.org/wiki/Nix_Modifying_Packages#Overriding_Existing_Packages
https://lethalman.blogspot.com/2014/07/nix-pill-1-why-you-should-give-it-try.html

more detail at the end of this rant, but my proposed solution here would be to follow a wiki-like
format for the official documentation.

Missing documentation
Aside from the issues with the documentation format, there are also plenty of issues with its
content. Many things are fully undocumented, especially where nixpkgs is concerned. For example,
nothing says that I should be using callPackage_i686 to package something with 32-bits
dependencies. Or how to package something that requires the user to manually add a source file
from their filesystem using nix-prefetch-url , or using nix-store --add-fixed . And what's the difference
between those two anyway? And why is there a separate qt5.callPackage , and when do I need it?

There are a ton of situations where you need oddball solutions to get something packaged. In fact, I
would argue that this is the majority of cases - most of the easy pickings have been packaged by
now, and the tricky ones are left. But as a new user that just wants to get an application working, I
end up spending several hours on each of the above questions, and I'm still not convinced that I
have the right answer. Had somebody taken 10 minutes to document this, even if just as a rough
note, it would have saved me hours of work.

No clear path to solutions
When faced with a given packaging problem, it's not at all obvious how to get tp the solution.
There's no obvious process for fixing or debugging issues, and error messages are often cryptic or
poorly formatted. What does "cannot coerce a set to a string" mean, and why is it happening? How
can I duct-tape-debug something by adding a print statement of some variety? Is there an
interactive debugger of some sort?

It's very difficult to learn enough about NixOS internals to figure out what the right way is to
package any given thing, and because there's no good feedback on what's wrong either, it's too
hard to get anything packaged that isn't a standard autotools build. There's no "Frequently Asked
Questions" or "Common Packaging Problems" section, nor have I found any useful tooling for
analyzing packaging problems in more detail. I've had to write some of this tooling myself!

The documentation should anticipate the common problems that new users run into, and give them
some hints on where to start looking. It currently completely fails to do so, and assumes that the
users will figure out the relation between things themselves.

Reading code
Because of the above issues, often the only solution is to read the code of existing packages, and
try to infer from their expressions how to approach certain problems - but that comes with its own
set of problems. There does not appear to be a consistent way of solving packaging problems in

https://gist.github.com/joepie91/5232c8f1e75a8f54367e5dfcfd573726#missing-documentation
https://gist.github.com/joepie91/5232c8f1e75a8f54367e5dfcfd573726#no-clear-path-to-solutions
https://gist.github.com/joepie91/5232c8f1e75a8f54367e5dfcfd573726#reading-code

NixOS, and almost every package seems to have invented its own way of solving the same
problems that other packages have already solved. After several hours of research, it often turns
out that half the solutions are either outdated or just wrong. And then I still have no idea what the
optimal solution is, out of the remaining options.

This is made worse by the serious lack of comments in nixpkgs . Barely any packages have
comments at all, and frequently there are complex multi-level abstractions in place to solve certain
problems, but with absolutely no information to explain why those abstractions exist. They're not
exactly self-evident either. Then there are the packages that do have comments, but they're aimed
at the user rather than the packager - one such example is the Guake package. Essentially, it
seems the repository is absolutely full of hacks with no standardized way of solving problems, no
doubt helped by the fact that existing solutions simply aren't documented.

This is a tremendous waste of time for everybody involved, and makes it very hard to package
anything unusual, often to the point of just giving up and hacking around the issue in an impure
way. Right now we have what seems like a significant amount of people doing the same work over
and over and over again, resulting in different implementations every time. If people took the time
to document their solutions, this problem would pretty much instantly go away. From a technical
point of view, there's absolutely no reason for packaging to be this hard to do.

Tooling
On top of all this, the tooling seems to change constantly - abstractions get deprecated, added,
renamed, moved, and so on. Many of the stdenv abstractions aren't documented, or their
documentation is incomplete. There's no clear way to determine which tooling is still in use, and
which tooling has been deprecated.

The tooling that is in use - in particular the command-line tooling - is often poorly designed from a
usability perspective. Different tools using different flags for the same purpose, behaving
differently in different scenarios for no obvious reason. There's a UX proposal that seems to fix
many of these problems, but it seems to be more or less dead, and its existence is not widely
known.

https://github.com/NixOS/nixpkgs/blob/master/pkgs/applications/misc/guake/default.nix#L1-L11
https://gist.github.com/joepie91/5232c8f1e75a8f54367e5dfcfd573726#tooling
https://gist.github.com/edolstra/efcadfd240c2d8906348

