
Protocols and
formats

Working with DBus

Working with DBus

What is DBus?
DBus is a standardized 'message bus' protocol that is mainly used on Linux. It serves to let
different applications on the same system talk to each other through a standardized format, with a
standardized way of specifying the available API.

Additionally, and this is probably the most-used feature, it allows for different applications to 'claim'
specific pre-defined ("well-known") namespaces, if they intend to provide the corresponding
service. For example, there are many different services that can show desktop notifications to the
user, and the user may be using any one of them depending on their desktop environment, but
whichever one it is, it will always claim the standard org.freedesktop.Notifications name.

That way, applications that want to show notifications don't need to know which specific
notification service is running on the system - they can just send them to whoever claimed that
name and implements the corresponding API.

How do you use DBus as a user?
As an end user, you don't really need to care about DBus. As long as a DBus daemon is running on
your system (and this will be the case by default on almost every Linux distribution), applications
using DBus should just work.

If you're curious, though, you can use a DBus introspection tool such as QDBusViewer or D-Spy to
have a look at what sort of APIs the programs on your system provide. Just be careful not to send
anything through it without researching it first - you can break things this way!

How do you use DBus as a developer?
You'll need a DBus protocol client. There are roughly two options:

1. Bindings to libdbus for the language you are using, or
2. A client implementation that's written directly in the language you are using (eg. dbus-

next in JS)

This article is a work in progress. It'll likely be expanded over time, but for now it's
incomplete.

You could also write your own client, as DBus typically just works over a local socket, but note that
the serialization format is a little unusual, so it'll take some time to implement it correctly. Using an
existing implementation is usually a better idea.

Note that you use a DBus client even when you want to provide an API over DBus; the 'server' in
this arrangement is the DBus daemon, not your application.

How the protocol works
DBus implements a few different kinds of interaction mechanisms:

Properties: These are (optionally read-only) values that can be read or written. They're
usually used to check or change something.
Methods: These are callable and can produce a result. They're usually used to do
something.
Signals: These are like events, and can be subscribed to. They're usually emitted when
something happens on the other side.

All of these - properties, methods and signals - are addressable by pre-defined names. However, it
takes a few steps to get there:

First, you need to select a bus name - this is kind of like a process name (or, in the case
of a "well-known" API, the standard name), although technically one process can present
multiple bus names. Its components are delimited by dots.
Then, on the resulting bus, you select an object path - essentially, this is the specific
'object' (or object type) within the process that you wish to access. Its components are
delimited by slashes.
Finally, on the selected object, you then select an interface - you can think of this as the
'service' that you wish to access. Custom DBus APIs often only implement a single
interface, in addition to the standard DBus-specified interfaces for introspection (see
below).

After these steps, you will end up with an interface that you can interact with - it has properties,
methods, and/or signals. Don't worry too much about how exactly the hierarchy works here - the
division between bus name, object path and interface can be (and in practice, is) implemented in
many different ways depending on requirements, and if you merely wish to use a DBus API from
some other application, you can simply specify whatever its documentation tells you for all of these
values.

Some more information and context about this division can be found here, though keep in mind
that you'll often encounter exactly one possible value for bus name, object path and interface, for
any given application that exposes an API over DBus, so it's not required reading.

Introspection

https://pydbus.readthedocs.io/en/latest/dbusaddressing.html

An additional feature of DBus is that it allows introspection of DBus APIs; that is, you can use the
DBus protocol itself to interrogate an API provider about its available API surface, the argument
types, and so on. The details of this are currently not covered here.

Some well-known DBus APIs
MPRIS - The 'media player control' API.
FreeDesktop Notifications - The standard API for displaying desktop notifications.

https://specifications.freedesktop.org/mpris-spec/latest/
https://specifications.freedesktop.org/notification-spec/latest/

