
Rust
Futures and Tokio

Futures and Tokio

Event loops
If you're not familiar with the concept of an 'event loop' yet, watch this video first. While this video
is about the event loop in JavaScript, most of the concepts apply to event loops in general, and
watching it will help you understand Tokio and Futures better as well.

Concepts
Futures: Think of a Future like an asynchronous Result ; it represents some sort of result
(a value or an error) that will eventually exist, but doesn't yet. It has many of the same
combinators as a Result does, the difference being that they are executed at a later point
in time, not immediately. Aside from representing a future result, a Future also contains
the logic that is necessary to obtain it. A Future will 'complete' (either successfully or with
an error) precisely once.
Streams: Think of a Stream like an asynchronous Iterator ; like a Future , it represents
some sort of data that will be obtained at a later point in time, but unlike a Future it can
produce multiple results over time. It has many of the same combinators as an Iterator
does. Essentially, a Stream is the "multiple results over time instead of one" counterpart
to a Future .
Executor: An Executor is a thing that, when you pass a Future or Stream into it, is
responsible for 1) turning the logic stored in the Future / Stream into an internal task, 2)
scheduling the work for that task, and 3) wiring up the Future's state to any underlying
resources. You don't usually implement these yourself, but use a pre-made Executor from
some third-party library. The exact scheduling is left up to the implementation of the
Executor .
.wait() : A method on a Future that will block the current thread until the Future has
completed, and that then returns the result of that Future . This is an example of an
Executor , although not a particularly useful one; it won't allow you to do work
concurrently.
Tokio reactor core: This is also an Executor , provided by the Tokio library. It's probably
what you'll be using when you use Tokio. The frontpage of the Tokio website provides an
example on how to use it.

This article was originally published at
https://gist.github.com/joepie91/bc2d29fab43b63d16f59e1bd20fd7b6e. It may be out of
date.

https://gist.github.com/joepie91/bc2d29fab43b63d16f59e1bd20fd7b6e#event-loops
https://www.youtube.com/watch?v=8aGhZQkoFbQ
https://gist.github.com/joepie91/bc2d29fab43b63d16f59e1bd20fd7b6e#concepts
https://tokio.rs/docs/getting-started/futures/
https://tokio.rs/docs/getting-started/streams-and-sinks/#streams
https://tokio.rs/
https://gist.github.com/joepie91/bc2d29fab43b63d16f59e1bd20fd7b6e

futures_cpupool : Yet another Executor ; this one schedules the work across a pool of
threads.

https://docs.rs/futures-cpupool/0.1.6/futures_cpupool/

