
Server
administration
General Linux server management notes, not specific to anything in particular.

Batch-migrating Gitolite repositories to Gogs
What is(n't) Docker actually for?
Blocking LLM scrapers on Alibaba Cloud from your nginx configuration
Dealing with a degraded btrfs array due to disk failure

Batch-migrating Gitolite
repositories to Gogs

NOTE: This will only work if you are an administrator on your Gogs instance, or if an administrator
has enabled local repository importing for all users.

First, save the following as migrate.sh somewhere, and make it executable (chmod +x migrate.sh):

HOSTNAME="git.cryto.net"
BASEPATH="/home/git/old-repositories/projects/joepie91"

OWNER_ID="$1"
CSRF=`cat ./cookies.txt | grep _csrf | cut -f 7`

while read REPO; do
	REPONAME=`echo "$REPO" | sed "s/\.git\$//"`
	curl "https://$HOSTNAME/repo/migrate" \
		-b "./cookies.txt" \
		-H 'origin: null' \
		-H 'content-type: application/x-www-form-urlencoded' \
		-H "authority: $HOSTNAME" \
		--data "_csrf=$CSRF" \
		--data-urlencode "clone_addr=$BASEPATH/$REPO" \
		--data-urlencode "uid=$OWNER_ID" \
		--data-urlencode "auth_username=" \
		--data-urlencode "auth_password=" \
		--data-urlencode "repo_name=$REPONAME" \
		--data-urlencode "description=Automatically migrated from Gitolite"
done

This article was originally published at
https://gist.github.com/joepie91/2ff74545f079352c740a.

https://gist.github.com/joepie91/2ff74545f079352c740a

Change HOSTNAME to point at your Gogs installation, and BASEPATH to point at the folder where
your Gitolite repositories live on the filesystem. It must be the entire base path - the repository
names cannot contain slashes!

Now save the Gogs cookies from your browser as cookies.txt , and create a file (eg. repositories.txt)
containing all your repository names, each on a new line. It could look something like this:

After that, run the following command:

... where you replace 1 with your User ID on your Gogs instance.

Done!

project1.git
project2.git
project3.git

cat repositories.txt | ./migrate.sh 1

What is(n't) Docker actually
for?

A brief listing of some misconceptions about the purpose of Docker.

Secure isolation
Some people try to use Docker as a 'containment system' for either:

Untrusted user-submitted code, or
Compromised applications

... but Docker explicitly does not provide that kind of functionality. You get essentially the same
level of security from just running things under a user account.

If you want secure isolation, either use a full virtualization technology (Xen HVM, QEMU/KVM,
VMWare, ...), or a containerization/paravirtualization technology that's explicitly designed to
provide secure isolation (OpenVZ, Xen PV, unprivileged LXC, ...)

"Runs everywhere"
Absolutely false. Docker will not run (well) on:

Old kernels
OpenVZ
Non-*nix systems (without additional virtualization that you could do yourself anyway)
Many other containerized/paravirtualized environments
Exotic architectures like MIPS

This article was originally published at
https://gist.github.com/joepie91/1427c8fb172e07251a4bbc1974cdb9cd.

This article was written in 2016. Some details may have changed since.

https://gist.github.com/joepie91/1427c8fb172e07251a4bbc1974cdb9cd#secure-isolation
https://news.ycombinator.com/item?id=7910117
https://www.stgraber.org/2014/01/17/lxc-1-0-unprivileged-containers/
https://gist.github.com/joepie91/1427c8fb172e07251a4bbc1974cdb9cd#runs-everywhere
https://gist.github.com/joepie91/1427c8fb172e07251a4bbc1974cdb9cd

Docker is just a containerization system. It doesn't do magic. And due to environmental limitations,
chances are that using Docker will actually make your application run in less environments.

No dependency conflicts
Sort of true, but misleading. There are many solutions to this, and in many cases it isn't even a
realistic problem.

Compiled languages: Just compile your binary statically. Same library overhead as
when using Docker, less management overhead.
Node.js: Completely unnecessary. Dependencies are already local to the project. For
different Node.js versions (although you generally shouldn't need this due to LTS
schedules and polyfills), nvm.
Python: virtualenv and pyenv.
Ruby: This one might actually be a valid reason to use some kind of containerization
system. Supposedly tools like rvm exist but frankly I've never seen them work well. Even
then, Docker is probably not the ideal option (see below).
External dependencies and other stuff: Usually, isolation isn't necessary, as these
applications tend to have extremely lengthy backwards compatibility, so you can just run
a recent version.

If you do need to isolate something and the above either doesn't suffice or it doesn't integrate with
your management flow well enough, you should rather look at something like Nix/NixOS, which
solves the dependency isolation problem in a much more robust and efficient way, and also solves
the problem of state. It does incur management overhead, like Docker would.

Magic scalability
First of all: you probably don't need any of this. 99.99% of projects will never have to scale beyond
a single system, and all you'll be doing is adding management overhead and moving parts that can
break, to solve a problem you never had to begin with.

If you do need to scale beyond a single system, even if that needs to be done rapidly, you probably
still don't get a big benefit from automated orchestration. You set up each server once, and
assuming you run the same OS/distro on each system, the updating process will be basically the
same for every system. It'll likely take you more time to set up and manage automated
orchestration, than it would to just do it manually when needed.

The only usecase where automated orchestration really shines, is in cases where you have high
variance in the amount of infrastructure you need - one day you need a single server, the next day
you need ten, and yet another day later it's back down to five. There are extremely few
applications that fall into this category, but even if your application does - there have been

https://gist.github.com/joepie91/1427c8fb172e07251a4bbc1974cdb9cd#no-dependency-conflicts
https://github.com/creationix/nvm/blob/master/README.markdown
https://virtualenv.pypa.io/en/stable/
https://github.com/yyuu/pyenv
https://nixos.org/
http://gfxmonk.net/2015/01/03/nixos-and-stateless-deployment.html
http://gfxmonk.net/2015/01/03/nixos-and-stateless-deployment.html
https://gist.github.com/joepie91/1427c8fb172e07251a4bbc1974cdb9cd#magic-scalability

automated orchestration systems for a long time (Puppet, Chef, Ansible, ...) that don't introduce
the kind of limitations or overhead that Docker does.

No need to rely on a sysadmin
False. Docker is not your system administrator, and you still need to understand what the moving
parts are, and how they interact together. Docker is just a container system, and putting an
application in a container doesn't somehow magically absolve you from having to have somebody
manage your systems.

https://gist.github.com/joepie91/1427c8fb172e07251a4bbc1974cdb9cd#no-need-to-rely-on-a-sysadmin

Blocking LLM scrapers on
Alibaba Cloud from your
nginx configuration
There are currently LLM scrapers running off many Alibaba Cloud IPs, that ignore robots.txt and
pretend to be desktop browsers. They also generate absurd request rates, to the point of being
basically a DDoS attack. One way to deal with them is to simply block all of Alibaba Cloud.

Here's how you can block them:

1. Generate a deny entry list at https://www.enjen.net/asn-
blocklist/index.php?asn=45102&type=nginx

2. Add the entries to your nginx configuration. It goes directly in the server { ... } block.

On NixOS
If you're using Nix or NixOS, you can keep the deny list in a separate file, which makes it easier to
maintain and won't clutter up your nginx configuration as much. It would look something like this:

... where you replace <name> with the name of your hostname.

This will also block legitimate users of Alibaba Cloud!

services.nginx.virtualHosts.<name>.extraConfig = ''
 ${import ./alibaba-blocklist.nix}
 # other config goes here
''

https://www.enjen.net/asn-blocklist/index.php?asn=45102&type=nginx
https://www.enjen.net/asn-blocklist/index.php?asn=45102&type=nginx

Dealing with a degraded
btrfs array due to disk failure
Forcing a btrfs filesystem to be mounted even though some drives are missing (in a default multi-
disk setup, ie. RAID0 for data but RAID1 for metadata):

This assumes that the mounting configuration is defined in your fstab , and will mount it as read-
only in a degraded state. You will be able to browse the filesystem, but any file contents may have
unexplained gaps and/or be corrupted. Mostly useful to figure out what data used to be on a
degraded filesystem.

mount -o degraded,ro /path/to/mount

Never mount a degraded filesystem as read-write unless you have a very specific reason to
need it, and you understand the risks. If applications are allowed to write to it, they can very
easily make the data corruption worse, and reduce your chances of data recovery to zero!

