
ES Modules are terrible,
actually

It's incredible how many collective developer hours have been wasted on pushing through the turd
that is ES Modules (often mistakenly called "ES6 Modules"). Causing a big ecosystem divide and
massive tooling support issues, for... well, no reason, really. There are no actual advantages to it.
At all.

It looks shiny and new and some libraries use it in their documentation without any explanation, so
people assume that it's the new thing that must be used. And then I end up having to explain to
them why, unlike CommonJS, it doesn't actually work everywhere yet, and may never do so. For
example, you can't import ESM modules from a CommonJS file! (Update: I've released a module
that works around this issue.)

And then there's Rollup, which apparently requires ESM to be used, at least to get things like
treeshaking. Which then makes people believe that treeshaking is not possible with CommonJS
modules. Well, it is - Rollup just chose not to support it.

And then there's Babel, which tried to transpile import / export to require / module.exports ,
sidestepping the ongoing effort of standardizing the module semantics for ESM, causing broken
imports and require("foo").default nonsense and spec design issues all over the place.

And then people go "but you can use ESM in browsers without a build step!", apparently not
realizing that that is an utterly useless feature because loading a full dependency tree over the
network would be unreasonably and unavoidably slow - you'd need as many roundtrips as there
are levels of depth in your dependency tree - and so you need some kind of build step anyway,
eliminating this entire supposed benefit.

And then people go "well you can statically analyze it better!", apparently not realizing that ESM
doesn't actually change any of the JS semantics other than the import / export syntax, and that the
import / export statements are equally analyzable as top-level require / module.exports .

"But in CommonJS you can use those elsewhere too, and that breaks static analyzers!", I hear you
say. Well, yes, absolutely. But that is inherent in dynamic imports, which by the way, ESM also

This post was originally published at
https://gist.github.com/joepie91/bca2fda868c1e8b2c2caf76af7dfcad3, which was in turn
adapted from an earlier Twitter thread.

https://github.com/sindresorhus/p-defer/issues/7
https://www.npmjs.com/package/fix-esm
https://github.com/indutny/webpack-common-shake
https://gist.github.com/joepie91/bca2fda868c1e8b2c2caf76af7dfcad3
https://twitter.com/joepie91/status/1254368447250694146

supports with its dynamic import() syntax. So it doesn't solve that either! Any static analyzer still
needs to deal with the case of dynamic imports somehow - it's just rearranging deck chairs on the
Titanic.

And then, people go "but now we at least have a standard module system!", apparently not
realizing that CommonJS was literally that, the result of an attempt to standardize the various
competing module systems in JS. Which, against all odds, actually succeeded!

... and then promptly got destroyed by ESM, which reintroduced a split and all sorts of
incompatibility in the ecosystem, rather than just importing some updated variant of CommonJS
into the language specification, which would have sidestepped almost all of these issues.

And while the initial CommonJS standardization effort succeeded due to none of the competing
module systems being in particularly widespread use yet, CommonJS is so ubiquitous in Javascript-
land nowadays that it will never fully go away. Which means that runtimes will forever have to
keep supporting two module systems, and developers will forever be paying the cost of the
interoperability issues between them.

But it's the future!
Is it really? The vast majority of people who believe they're currently using ESM, aren't even
actually doing so - they're feeding their entire codebase through Babel, which deftly converts all of
those snazzy import and export statements back into CommonJS syntax. Which works. So what's
the point of the new module system again, if it all works with CommonJS anyway?

And it gets worse; import and export are designed as special-cased statements. Aside from the
obvious problem of needing to learn a special syntax (which doesn't quite work like object
destructuring) instead of reusing core language concepts, this is also a downgrade from
CommonJS' require , which is a first-class expression due to just being a function call.

That might sound irrelevant on the face of it, but it has very real consequences. For example, the
following pattern is simply not possible with ESM:

Or how about this one? Also no longer possible:

Having language features available as a first-class expression is one of the most desirable
properties in language design; yet for some completely unclear reason, ESM proponents decided to
remove that property. There's just no way anymore to directly combine an import statement with

const someInitializedModule = require("module-name")(someOptions);

const app = express();
// ...
app.use("/users", require("./routers/users"));

https://gist.github.com/joepie91/bca2fda868c1e8b2c2caf76af7dfcad3#but-its-the-future

some other JS syntax, whether or not the module path is statically specified.

The only way around this is with await import , which would break the supposed static analyzer
benefits, only work in async contexts, and even then require weird hacks with parentheses to make
it work correctly.

It also means that you now need to make a choice: do you want to be able to use ESM-only
dependencies, or do you want to have access to patterns like the above that help you keep your
codebase maintainable? ESM or maintainability, your choice!

So, congratulations, ESM proponents. You've destroyed a successful userland specification, wasted
many (hundreds of?) thousands of hours of collective developer time, many hours of my own
personal unpaid time trying to support people with the fallout, and created ecosystem
fragmentation that will never go away, in exchange for... fuck all.

This is a disaster, and the only remaining way I see to fix it is to stop trying to make ESM happen,
and deprecate it in favour of some variant of CommonJS modules being absorbed into the spec. It's
not too late yet; but at some point it will be.

Revision #1
Created 11 December 2024 01:14:30 by joepie91
Updated 11 December 2024 18:44:19 by joepie91

