
Introduction to sessions

While a lot of Node.js guides recommend using JWT as an alternative to session cookies
(sometimes even mistakenly calling it "more secure than cookies"), this is a terrible idea. JWTs are

absolutely not a secure way to deal with user authentication/sessions, and this article goes into
more detail about that.

Secure user authentication requires the use of session cookies.

Cookies are small key/value pairs that are usually sent by a server, and stored on the client (often
a browser). The client then sends this key/value pair back with every request, in a HTTP header.
This way, unique clients can be identified between requests, and client-side settings can be stored
and used by the server.

Session cookies are cookies containing a unique session ID that is generated by the server. This
session ID is used by the server to identify the client whenever it makes a request, and to associate
session data with that request.

Session data is arbitrary data that is stored on the server side, and that is associated with a session
ID. The client can't see or modify this data, but the server can use the session ID from a request to
associate session data with that request.

Altogether, this allows for the server to store arbitrary data for a session (that the user can't see or
touch!), that it can use on every subsequent request in that session. This is how a website
remembers that you've logged in.

Step-by-step, the process goes something like this:

1. Client requests login page.
2. Server sends login page HTML.
3. Client fills in the login form, and submits it.
4. Server receives the data from the login form, and verifies that the username and

password are correct.
5. Server creates a new session in the database, containing the ID of the user in the

database, and generates a unique session ID for it (which is not the same as the user ID!)
6. Server sends the session ID to the user as a cookie header, alongside a "welcome" page.
7. Client receives the session ID, and saves it locally as a cookie.
8. Client displays the "welcome" page that the cookie came with.

This article was originally published at
https://gist.github.com/joepie91/cf5fd6481a31477b12dc33af453f9a1d.

http://cryto.net/~joepie91/blog/2016/06/13/stop-using-jwt-for-sessions/
https://gist.github.com/joepie91/cf5fd6481a31477b12dc33af453f9a1d

9. User clicks a link on the welcome page, navigating to his "notifications" page.
10. Client retrieves the session cookie from storage.
11. Client requests the notifications page, sending along the session cookie (containing the

session ID).
12. Server receives the request.
13. Server looks at the session cookie, and extract the session ID.
14. Server retrieves the session data from the database, for the session ID that it received.
15. Server associates the session data (containing the user ID) with the request, and passes

it on to something that handles the request.
16. Server request handler receives the request (containing the session data including user

ID), and sends a personalized notifications page for the user with that ID.
17. Client receives the personalized notifications page, and displays it.
18. User clicks another link, and we go back to step 10.

Configuring sessions
Thankfully, you won't have to implement all this yourself - most of it is done for you by existing
session implementations. If you're using Express, that implementation would be express-session.

The express-session module doesn't implement the actual session storage itself, it only handles the
Express-related bits - for example, it ensures that req.session is automatically loaded from and
saved to.

For the storage of session data, you need to specify a "session store" that's specific to the
database you want to use for your session data - and when using Knex, connect-session-knex is the
best option for that.

While full documentation is available in the express-session repository, this is what your express-
session initialization might look like when you're using a relational database like PostgreSQL
(through Knex):

const express = require("express");
const knex = require("knex");
const expressSession = require("express-session");
const KnexSessionStore = require("connect-session-knex")(expressSession);

const config = require("./config.json");

/* ... other code ... */

/* You will probably already have a line that looks something like the below.
 * You won't have to create a new Knex instance for dealing with sessions - you

https://gist.github.com/joepie91/cf5fd6481a31477b12dc33af453f9a1d#configuring-sessions
https://github.com/expressjs/session
http://knexjs.org/

The configuration example in more detail

The connect-session-knex module needs access to the express-session library, so instead of exporting
the session store constructor directly, it exports a wrapper function. We call that wrapper function
immediately after requiring the module, passing in the express-session module, and we get back a
session store constructor.

This is where we 1) create a new express-session middleware, and 2) app.use it, so that it processes
every request, attaching session data where needed.

 * can just use the one you already have, and the Knex initialization here is
 * purely for illustrative purposes. */
let db = knex(require("./knexfile"));

let app = express();

/* ... other app initialization code ... */

app.use(expressSession({
 secret: config.sessions.secret,
 resave: false,
 saveUninitialized: false,
 store: new KnexSessionStore({
 knex: db
 })
}));

/* ... rest of the application goes here ... */

require("connect-session-knex")(expressSession)

app.use(expressSession({
 secret: config.sessions.secret,
 resave: false,
 saveUninitialized: false,
 store: new KnexSessionStore({
 knex: db
 })
}));

secret: config.sessions.secret,

https://gist.github.com/joepie91/cf5fd6481a31477b12dc33af453f9a1d#the-configuration-example-in-more-detail

Every application should have a "secret" for sessions - essentially a secret key that will be used to
cryptographically sign the session cookie, so that the user can't tamper with it. This should be a
random value, and it should be stored in a configuration file. You should not store this value (or any
other secret values) in the source code directly.

On Linux and OS X, a quick way to generate a securely random key is the following command: cat
/dev/urandom | env LC_CTYPE=C tr -dc _A-Za-z0-9 | head -c${1:-64}

When resave is set to true , express-session will always save the session data after every request,
regardless of whether the session data was modified. This can cause race conditions, and therefore
you usually don't want to do this, but with some session stores it's necessary as they don't let you
reset the "expiry timer" without saving all the session data again.

connect-session-knex doesn't have this problem, and so you should set it to false , which is the safer
option. If you intend to use a different session store, you should consult the express-session
documentation for more details about this option.

If the user doesn't have a session yet, a brand new req.session object is created for them on their
first request. This setting determines whether that session should be saved to the database, even if
no session data was stored into it. Setting it to false makes it so that the session is only saved if it's
actually used for something, and that's the setting you want here.

This tells express-session where to store the actual session data. In the case of connect-session-knex
(which is where KnexSessionStore comes from), we need to pass in an existing Knex instance, which
it will then use for interacting with the sessions table. Other options can be found in the connect-

session-knex documentation.

Using sessions
The usage of sessions is quite simple - you simply set properties on req.session , and you can then
access those properties from other requests within the same session. For example, this is what a
login route might look like (assuming you're using Knex, scrypt-for-humans , and a custom
AuthenticationError created with create-error):

resave: false,

saveUninitialized: false,

store: new KnexSessionStore({
 knex: db
})

https://gist.github.com/joepie91/7105003c3b26e65efcea63f3db82dfba
https://www.npmjs.com/package/connect-session-knex
https://www.npmjs.com/package/connect-session-knex
https://gist.github.com/joepie91/cf5fd6481a31477b12dc33af453f9a1d#using-sessions
https://www.npmjs.com/package/scrypt-for-humans
https://www.npmjs.com/package/create-error

And your /dashboard route might look like this:

router.post("/login", (req, res) => {
 return Promise.try(() => {
 return db("users").where({
 username: req.body.username
 });
 }).then((users) => {
 if (users.length === 0) {
 throw new AuthenticationError("No such username exists");
 } else {
 let user = users[0];

 return Promise.try(() => {
 return scryptForHumans.verifyHash(req.body.password, user.hash);
 }).then(() => {
 /* Password was correct */
 req.session.userId = user.id;
 res.redirect("/dashboard");
 }).catch(scryptForHumans.PasswordError, (err) => {
 throw new AuthenticationError("Invalid password");
 });
 }
 });
});

router.get("/dashboard", (req, res) => {
 return Promise.try(() => {
 if (req.session.userId == null) {
 /* User is not logged in */
 res.redirect("/login");
 } else {
 return Promise.try(() => {
 return db("users").where({
 id: req.session.userId
 });
 }).then((users) => {
 if (users.length === 0) {
 /* User no longer exists */
 req.session.destroy();

In this example, req.session.destroy() will - like the name suggests - destroy the session, essentially
returning the user to a session-less state. In practice, this means they get "logged out".

Now, if you had to do all that logic for every route that requires the user to be logged in, it would
get rather unwieldy. So let's move it out into some middleware:

 res.redirect("/login");
 } else {
 res.render("dashboard", {
 user: users[0];
 });
 }
 });
 }
 });
});

function requireLogin(req, res, next) {
 return Promise.try(() => {
 if (req.session.userId == null) {
 /* User is not logged in */
 res.redirect("/login");
 } else {
 return Promise.try(() => {
 return db("users").where({
 id: req.session.userId
 });
 }).then((users) => {
 if (users.length === 0) {
 /* User no longer exists */
 req.session.destroy();
 res.redirect("/login");
 } else {
 req.user = users[0];
 next();
 }
 });
 }
 });
}

Note the following:

We now have a separate requireLogin function that verifies whether the user is logged in.
That same function also sets req.user if they are logged in, with their user data, before
calling next() (which passes control to the next middleware/route).
Instead of only specifying a path and a route in the router.get call, we now specify our
requireLogin middleware as well. It will get called before the route, and the route is only
ever called if the requireLogin middleware calls next() (which it only does for logged-in
users).

router.get("/dashboard", requireLogin, (req, res) => {
 res.render("dashboard", {
 user: req.user
 });
});

Revision #1
Created 11 December 2024 01:22:06 by joepie91
Updated 11 December 2024 18:44:19 by joepie91

