Monolithic vs. modular -
what's the difference?

This article was originally published at

https://gist.github.com/joepie91/7f03a733a3a72d2396d6.

When you're developing in Node.js, you're likely to run into these terms - "monolithic" and
"modular”. They're usually used to describe the different types of frameworks and libraries; not just
HTTP frameworks, but modules in general.

At a glance

e Monolithic: "Batteries-included" and typically tightly coupled, it tries to include all the
stuff that's needed for common usecases. An example of a monolithic web framework

would be Sails.js.
e Modular: "Minimal" and loosely coupled. Only includes the bare minimum of functionality
and structure, and the rest is a plugin. Fundamentally, it generally only has a single

‘responsibility'. An example of a modular web framework would be Express.

Coupled?

In software development, the terms "tightly coupled" and "loosely coupled" are used to indicate
how much components rely on each other; or more specifically, how many assumptions they make
about each other. This directly translates to how easy it is to replace and change them.

e Tightly coupled: Highly cohesive code, where every part of the code makes assumptions
about every other part of the code.

e Loosely coupled: Very "separated" code, where every part of the code communicates
with other parts through more-or-less standardized and neutral interfaces.

While tight coupling can sometimes result in slightly more performant code and very occasionally
makes it easier to build a 'mental model', loosely coupled code is much easier to understand and
maintain - as the inner workings of a component are separated from its interface or API, you can

make many more assumptions about how it behaves.


http://sailsjs.org/
http://expressjs.com/
https://gist.github.com/joepie91/7f03a733a3a72d2396d6#coupled
https://gist.github.com/joepie91/7f03a733a3a72d2396d6

Loosely coupled code is often centered around 'events' and data - a component 'emits' changes
that occur, with data attached to them, and other components may optionally 'listen' to those
events and do something with it. However, the emitting component has no idea who (if anybody!)
is listening, and cannot make assumptions about what the data is going to be used for.

What this means in practice, is that loosely coupled (and modular!) code rarely needs to be
changed - once it is written, has a well-defined set of events and methods, and is free of bugs, it no
longer needs to change. If an application wants to start using the data differently, it doesn't require
changes in the component; the data is still of the same format, and the application can simply
process it differently.

This is only one example, of course - loose coupling is more of a practice than a pattern. The exact
implementation depends on your usecase. A quick checklist to determine how loosely coupled your
code is:

[l Does your component rely on external state? This is an absolute no-no. Your
component cannot rely on any state outside of the component itself. It may not make any
assumptions about the application whatsoever. Don't even rely on configuration files or other
filesystem files - all such data must be passed in by the application explicitly, always. What
isn't in the component itself, doesn't exist.

[l How many assumptions does it make about how the result will be used? Loosely
coupled code shouldn't care about how its output will be used, whether it's a return value or
an event. The output just needs to be consistent, documented, and neutral.

[l How many custom 'types' are used? Loosely coupled code should generally only
accept objects that are defined on a language or runtime level, and in common use. Arrays
and A+ promises are fine, for example - a proprietary representation of an ongoing task is
not.

[1 If you need a custom type, how simple is it? If absolutely needed, your custom
object type should be as plain as possible - just a plain Javascript object, optimally. It should
be well-documented, and not duplicate an existing implementation to represent this kind of
data. Ideally, it should be defined in a separate project, just for documenting the type; that
way, others can implement it as well.

In this section, I've used the terms "component" and "application", but these are interchangeable
with "callee"/"caller", and "provider"/"consumer". The principles remain the same.

The trade-offs

At first, a monolithic framework might look easier - after all, it already includes everything you
think you're going to need. In the long run, however, you're likely to run into situations where the
framework just doesn't quite work how you want it to, and you have to spend time trying to work
around it. This problem gets worse if your usecase is more unusual - because the framework
developers didn't keep in mind your usecase - but it's a risk that always exists to some degree.


https://gist.github.com/joepie91/7f03a733a3a72d2396d6#the-trade-offs

Initially, a modular framework might look harder - you have to figure out what components to use
for yourself. That's a one-time cost, however; the majority of modules are reusable across projects,
so after your first project you'll have a good idea of what to start with. The remaining usecase-
specific modules would've been just as much of a problem in a monolithic framework, where they
likely wouldn't have existed to begin with.

Another consideration is the possibility to 'swap out' components. What if there's a bug in the
framework that you're unable (or not allowed) to fix? When building your application modularly,
you can simply get rid of the offending component and replace it with a different one; this usually
doesn't take more than a few minutes, because components are typically small and only do one
thing.

In @ monolithic framework, this is more problematic - the component is an inherent part of the
framework, and replacing it may be impossible or extremely hard, depending on how many
assumptions the framework makes. You will almost certainly end up implementing a workaround of
some sort, which can take hours; you need to understand the framework's codebase, the
component you're using, and the exact reason why it's failing. Then you need to write code that
works around it, sometimes even having to 'monkey-patch' framework methods.

Relatedly, you may find out halfway through the project that the framework doesn't support your
usecase as well as you thought it would. Now you have to either replace the entire framework, or
build hacks upon hacks to make it 'work' somehow; well enough to convince your boss or client,
anyway. The higher cost for on-boarding new developers (as they have to learn an entire
framework, not just the bits you're interested in right now), only compounds this problem - now
they also have to learn why all those workarounds exist.

In summary, the tradeoffs look like this:

e Monolithic: Slightly faster to get started with, but less control over its workings, more
chance of the framework not supporting your usecase, and higher long-term maintenance
cost due to the inevitable need for workarounds.

e Modular: Takes slightly longer to get started on your first project, but total control over
its workings, practically every usecase is supported, and long-term maintenance is
cheaper.

The "it's just a prototype!" argument

When explaining this to people, a common justification for picking a monolithic framework is that
"it's just a prototype!", or "it's just an MVP!", with the implication that it can be changed later. In
reality, it usually can't.

Try explaining to your boss that you want to throw out the working(!) code you have, and rewrite
everything from the ground up in a different, more maintainable framework. The best response
that you're likely to get, is your boss questioning why you didn't use that framework to begin with -
but more likely, the answer is "no", and you're going to be stuck with your hard-to-maintain


https://gist.github.com/joepie91/7f03a733a3a72d2396d6#the-its-just-a-prototype-argument

monolithic codebase for the rest of the project or your employment, whichever terminates first.

Again, the cost of a modular codebase is a one-time cost. After your first project, you already know
where to find most modules you need, and building on a modular framework will not be more
expensive than building on a monolithic one. Don't fall into the "prototype trap”, and do it right
from day one. You're likely to be stuck with it for the rest of your employment.

Revision #1
Created 11 December 2024 01:25:24 by joepie9l
Updated 11 December 2024 18:18:00 by joepie91l



