Node.js for PHP developers

This article was originally published at

https://gist.github.com/joepie91/87c5b93a5facb4f99d7b2a65f08363db. It has not been
finished yet, but still contains some useful pointers.

Learning a second language

If PHP was your first language, and this is the first time you're looking to learn another language,
you may be tempted to try and "make it work like it worked in PHP". While understandable, this is a
really bad idea. Different languages have fundamentally different designs, with different best
practices, different syntax, and so on. The result of this is that different languages are also better
for different usecases.

By trying to make one language work like the other, you get the worst of both worlds - you lose

the benefits that made language one good for your usecase, and add the design flaws of language

two. You should always aim to learn a language properly, including how it is commonly or optimally
used. Your code is going to look and feel considerably different, and that's okay!

Over time, you will gain a better understanding of how different language designs carry different
tradeoffs, and you'll be able to get the best of both worlds. This will take time, however, and you
should always start by learning and using each language as it is first, to gain a full understanding of
it.

One thing | explicitly recommend against, is CGI-Node - you should never, ever, ever use this. It
makes a lot of grandiose claims, but it actually just reimplements some of the worst and most
insecure parts of PHP in Node.js. It is also completely unnecessary - the sections below will go into
more detail.

Execution model

The "execution model" of a language describes how your code is executed. In the case of a web-
based application, it decides how your server goes from "a HTTP request is coming in", to "the
application code is executed", to "a response has been sent".

http://www.cgi-node.org/
https://gist.github.com/joepie91/87c5b93a5facb4f99d7b2a65f08363db#execution-model
https://gist.github.com/joepie91/87c5b93a5facb4f99d7b2a65f08363db

PHP uses what we'll call the "CGI model" to run your code - for every HTTP request that comes in,
the webserver (usually Apache or nginx) will look in your "document root" for a .php file with the
same path and filename, and then execute that file. This means that for every new request, it
effectively starts a new PHP process, with a "clean slate" as far as application state is concerned.
Other than $_SESSION variables, all the variables in your PHP script are thrown away after a
response is sent.

This "CGI model" is a somewhat unique execution model, and only a few technologies use it - PHP,
ASP and ColdFusion are the most well-known. It's also a very fragile and limited model, that makes
it easy to introduce security issues; for example, "uploading a shell" is something that's only
possible because of the CGI model.

Node.js, however, uses a different model: the "long-running process" model. In this model, your
code is not executed by a webserver - rather, your code is the webserver. Your application is only
started once, and once it has started, it will be handling an essentially infinite amount of requests,
potentially hundreds or thousands at the same time. Almost every other language uses this same
model.

This also means that your application state continues to exist after a response has been sent, and
this makes a lot of projects much easier to implement, because you don't need to constantly store
every little thing in a database; instead, you only need to store things in your database that you
actually intend to store for a long time.

Some of the advantages of the "long-running process" model (as compared to the "CGI model"):

e You can share information between requests without having to store it in an external
database or the session data.

e There is a lot less overhead per request, and you can handle more concurrent requests on
the same server.

e You can continue doing work after having sent a response to the client, and there is no
time limit.

e You can easily implement something that needs a long-running connection, such as
applications that are based on WebSockets.

e It's not possible for an attacker to "upload a shell".

The reason attackers cannot upload a shell, is that there is no direct mapping between a URL and a
location on your filesystem. Your application is explicitly designed to only execute specific files that
are a part of your application. When you try to access a .js file that somebody uploaded, it will just
send the .js file; it won't be executed.

There aren't really any disadvantages - while you do have to have a Node.js process running at all
times, it can be managed in the same way as any other webserver. You can also use another
webserver in front of it; for example, if you want to host multiple domains on a single server.

Hosting

Node.js applications will not run in most shared hosting environments, as they are designed to only
run PHP. While there are some 'managed hosting' environments like Heroku that claim to work
similarly, they are usually rather expensive and not really worth the money.

When deploying a Node.js project in production, you will most likely want to host it on a VPS or a
dedicated server. These are full-blown Linux systems that you have full control over, so you can
run any application or database that you want. The cheapest option here is to go with an
"unmanaged provider".

Unmanaged providers are providers whose responsibility ends at the server and the network - they
make sure that the system is up and running, and from that point on it's your responsibility to
manage your applications. Because they do not provide support for your projects, they are a lot
cheaper than "managed providers".

My usual recommendations for unmanaged providers are (in no particular order): RamNode,

Afterburst, SecureDragon, Hostigation and RAM Host. Another popular choice is DigitalOcean - but
while their service is stable and sufficient for most people, | personally don't find the

performance/resources/price ratio to be good enough. I've also heard good things about Linode,
but | don't personally use them - they do, however, apparently provide limited support for your
server management.

As explained in the previous section, your application is the webserver. However, there are some
reasons you might still want to run a "generic" webserver in front of your application:

e Easier setup of TLS ("SSL").
o Multiple applications for different domains, on the same server ("virtual hosts").
e Slightly faster static file serving.

My recommendation for this is Caddy. While nginx is a popular and often-recommended option, it's
considerably harder to set up than Caddy, especially for TLS.

Frameworks

(this section is a work in progress, these are just some notes left for myself)

e execution model
e Express
e small modules

https://gist.github.com/joepie91/87c5b93a5facb4f99d7b2a65f08363db#hosting
https://ramnode.com/
http://afterburst.com/
https://securedragon.net/
http://hostigation.com/
http://ramhost.us/
https://www.digitalocean.com/
http://linode.com/
https://caddyserver.com/
https://gist.github.com/joepie91/87c5b93a5facb4f99d7b2a65f08363db#frameworks

Templating

If you've already used a templater like Smarty in PHP, here's the short version: use either Pug or

Nunjucks, depending on your preference. Both auto-escape values by default, but | strongly
recommend Pug - it understands the actual structure of your template, which gives you more
flexibility.

If you've been using include() or require() in PHP along with inline <?php echo($foobar); 7>
statements, here's the long version:

The "using-PHP-as-a-templater" approach is quite flawed - it makes it very easy to introduce

security issues such as XSS by accidentally forgetting to escape something. | won't go into detail
here, but suffice to say that this is a serious risk, regardless of how competent you are as a
developer. Instead, you should be using a templater that auto-escapes values by default,

unless you explicitly tell it not to. Pug and Nunjucks are two options in Node.js that do

precisely that, and both will work with Express out of the box.

Revision #1
Created 11 December 2024 18:31:42 by joepie9l
Updated 11 December 2024 18:44:19 by joepie9l

https://gist.github.com/joepie91/87c5b93a5facb4f99d7b2a65f08363db#templating
https://pugjs.org/
https://mozilla.github.io/nunjucks/
http://excess-xss.com/
https://pugjs.org/
https://mozilla.github.io/nunjucks/

