
Rendering pages server-side
with Express (and Pug)

Terminology
View: Also called a "template", a file that contains markup (like HTML) and optionally
additional instructions on how to generate snippets of HTML, such as text interpolation,
loops, conditionals, includes, and so on.
View engine: Also called a "template library" or "templater", ie. a library that implements
view functionality, and potentially also a custom language for specifying it (like Pug does).
HTML templater: A template library that's designed specifically for generating HTML. It
understands document structure and thus can provide useful advanced tools like mixins,
as well as more secure output escaping (since it can determine the right escaping
approach from the context in which a value is used), but it also means that the templater
is not useful for anything other than HTML.
String-based templater: A template library that implements templating logic, but that
has no understanding of the content it is generating - it simply concatenates together
strings, potentially multiple copies of those strings with different values being used in
them. These templaters offer a more limited feature set, but are more widely usable.
Text interpolation / String interpolation: The insertion of variable values into a string
of some kind. Typical examples include ES6 template strings, or this example in Pug:
Hello #{user.username}!
Locals: The variables that are passed into a template, to be used in rendering that
template. These are generally specified every time you wish to render a template.

Pug is an example of a HTML templater. Nunjucks is an example of a string-based templater. React
could technically be considered a HTML templater, although it's not really designed to be used
primarily server-side.

View engine setup
Assuming you'll be using Pug, this is simply a matter of installing Pug...

This article was originally published at
https://gist.github.com/joepie91/c0069ab0e0da40cc7b54b8c2203befe1.

https://gist.github.com/joepie91/c0069ab0e0da40cc7b54b8c2203befe1#terminology
https://gist.github.com/joepie91/c0069ab0e0da40cc7b54b8c2203befe1#view-engine-setup
https://gist.github.com/joepie91/c0069ab0e0da40cc7b54b8c2203befe1


... and then configuring Express to use it:

You won't need to require()  Pug anywhere, Express will do this internally.

You'll likely want to explicitly set the directory where your templates will be stored, as well:

This will make Express look for your templates in the "views" directory, relative to the file in which
you specified the above line.

Rendering a page
homepage.pug:

app.js:

Express will automatically add an extension to the file. That means that - with our Express
configuration - the "homepage"  template name in the above example will point at
views/homepage.pug .

npm install --save pug

let app = express();

app.set("view engine", "pug");

/* ... rest of the application goes here ... */

let app = express();

app.set("view engine", "pug");
app.set("views", path.join(__dirname, "views"));

/* ... rest of the application goes here ... */

html
    body
        h1 Hello World!
        p Nothing to see here.

router.get("/", (req, res) => {
    res.render("homepage");
});

https://gist.github.com/joepie91/c0069ab0e0da40cc7b54b8c2203befe1#rendering-a-page


Rendering a page with locals
homepage.pug:

app.js:

In this example, the #{user.username}  bit is an example of string interpolation. The "locals" are just
an object containing values that the template can use. Since every expression in Pug is written in
JavaScript, you can pass any kind of valid JS value into the locals, including functions (that you can
call from the template).

For example, we could do the following as well - although there's no good reason to do this, so
this is for illustratory purposes only:

homepage.pug:

app.js:

html
    body
        h1 Hello World!
        p Hi there, #{user.username}!

router.get("/", (req, res) => {
    res.render("homepage", {
        user: req.user
    });
});

html
    body
        h1 Hello World!
        p Hi there, #{getUsername()}!

router.get("/", (req, res) => {
    res.render("homepage", {
        getUsername: function() {
            return req.user;
        }
    });
});

https://gist.github.com/joepie91/c0069ab0e0da40cc7b54b8c2203befe1#rendering-a-page-with-locals


Using conditionals
homepage.pug:

app.js:

Again, the expression in the conditional is just a JS expression. All defined locals are accessible and
usable as before.

Using loops
homepage.pug:

app.js:

html
    body
        h1 Hello World!

        if user != null
            p Hi there, #{user.username}!
        else
            p Hi there, unknown person!

router.get("/", (req, res) => {
    res.render("homepage", {
        user: req.user
    });
});

html
    body
        h1 Hello World!

        if user != null
            p Hi there, #{user.username}!
        else
            p Hi there, unknown person!

        p Have some vegetables:

        ul
            for vegetable in vegetables
                li= vegetable

https://gist.github.com/joepie91/c0069ab0e0da40cc7b54b8c2203befe1#using-conditionals
https://gist.github.com/joepie91/c0069ab0e0da40cc7b54b8c2203befe1#using-loops


Note that this...

... is just shorthand for this:

By default, the contents of a tag are assumed to be a string, optionally with interpolation in one or
more places. By suffixing the tag name with = , you indicate that the contents of that tag should
be a JavaScript expression instead.

That expression may just be a variable name as well, but it doesn't have to be - any JS expression
is valid. For example, this is completely okay:

And this is completely valid as well, as long as the randomVegetable method is defined in the
locals:

Request-wide locals
Sometimes, you want to make a variable available in every res.render  for a request, no matter what
route or middleware the page is being rendered from. A typical example is the user object for the
current user. This can be accomplished by setting it as a property on the res.locals  object.

homepage.pug:

router.get("/", (req, res) => {
    res.render("homepage", {
        user: req.user,
        vegetables: [
            "carrot",
            "potato",
            "beet"
        ]
    });
});

li= vegetable

li #{vegetable}

li= "foo" + "bar"

li= randomVegetable()

html
    body
        h1 Hello World!

https://gist.github.com/joepie91/c0069ab0e0da40cc7b54b8c2203befe1#request-wide-locals


app.js:

Application-wide locals
Sometimes, a value even needs to be application-wide - a typical example would be the site name
for a self-hosted application, or other application configuration that doesn't change for each
request. This works similarly to res.locals , only now you set it on app.locals .

homepage.pug:

        if user != null
            p Hi there, #{user.username}!
        else
            p Hi there, unknown person!

        p Have some vegetables:

        ul
            for vegetable in vegetables
                li= vegetable

app.use((req, res, next) => {
    res.locals.user = req.user;
    next();
});

/* ... more code goes here ... */

router.get("/", (req, res) => {
    res.render("homepage", {
        vegetables: [
            "carrot",
            "potato",
            "beet"
        ]
    });
});

html
    body
        h1 Hello World, this is #{siteName}!

        if user != null

https://gist.github.com/joepie91/c0069ab0e0da40cc7b54b8c2203befe1#application-wide-locals


app.js:

The order of specificity is as follows: app.locals  are overwritten by res.locals  of the same name, and
res.locals  are overwritten by res.render  locals of the same name.

In other words: if we did something like this...

            p Hi there, #{user.username}!
        else
            p Hi there, unknown person!

        p Have some vegetables:

        ul
            for vegetable in vegetables
                li= vegetable

app.locals.siteName = "Vegetable World";

/* ... more code goes here ... */

app.use((req, res, next) => {
    res.locals.user = req.user;
    next();
});

/* ... more code goes here ... */

router.get("/", (req, res) => {
    res.render("homepage", {
        vegetables: [
            "carrot",
            "potato",
            "beet"
        ]
    });
});

router.get("/", (req, res) => {
    res.render("homepage", {
        siteName: "Totally Not Vegetable World",
        vegetables: [
            "carrot",



... then the homepage would show "Totally Not Vegetable World" as the website name, while every
other page on the site still shows "Vegetable World".

Rendering a page after asynchronous
operations
homepage.pug:

app.js:

            "potato",
            "beet"
        ]
    });
});

html
    body
        h1 Hello World, this is #{siteName}!

        if user != null
            p Hi there, #{user.username}!
        else
            p Hi there, unknown person!

        p Have some vegetables:

        ul
            for vegetable in vegetables
                li= vegetable

app.locals.siteName = "Vegetable World";

/* ... more code goes here ... */

app.use((req, res, next) => {
    res.locals.user = req.user;
    next();
});

/* ... more code goes here ... */

https://gist.github.com/joepie91/c0069ab0e0da40cc7b54b8c2203befe1#rendering-a-page-after-asynchronous-operations


Basically the same as when you use res.send , only now you're using res.render .

Template inheritance in Pug
It would be very impractical if you had to define the entire site layout in every individual template -
not only that, but the duplication would also result in bugs over time. To solve this problem, Pug
(and most other templaters) support template inheritance. An example is below.

layout.pug:

homepage.pug:

app.js:

router.get("/", (req, res) => {
    return Promise.try(() => {
        return db("vegetables").limit(3);
    }).map((row) => {
        return row.name;
    }).then((vegetables) => {
        res.render("homepage", {
            vegetables: vegetables
        });
    });
});

html
    body
        h1 Hello World, this is #{siteName}!

        if user != null
            p Hi there, #{user.username}!
        else
            p Hi there, unknown person!

        block content
            p This page doesn't have any content yet.

extends layout

block content
    p Have some vegetables:

    ul
        for vegetable in vegetables
            li= vegetable

https://gist.github.com/joepie91/c0069ab0e0da40cc7b54b8c2203befe1#template-inheritance-in-pug


That's basically all there is to it. You define a block  in the base template - optionally with default
content, as we've done here - and then each template that "extends" (inherits from) that base
template can override such block s. Note that you never render layout.pug  directly - you still render
the page layouts themselves, and they just inherit from the base template.

Things of note:

Overriding a block  is optional. If you don't override a block , it will simply contain either
the default content from the base template (if any is specified), or no content at all (if
not).
You can have an unlimited number of block s with different names - for example, the one
in our example is called content . You can decide to override any of them from a template,
all of them, or none at all. It's up to you.
You can nest multiple block s with different names. This can be useful for more complex
layout variations.
You can have multiple levels of inheritance - any template you are inheriting from can
itself inherit from another template. This can be especially useful in combination with
nested block s, for complex cases.

app.locals.siteName = "Vegetable World";

/* ... more code goes here ... */

app.use((req, res, next) => {
    res.locals.user = req.user;
    next();
});

/* ... more code goes here ... */

router.get("/", (req, res) => {
    return Promise.try(() => {
        return db("vegetables").limit(3);
    }).map((row) => {
        return row.name;
    }).then((vegetables) => {
        res.render("homepage", {
            vegetables: vegetables
        });
    });
});



Static files
You'll probably also want to serve static files on your site, whether they are CSS files, images,
downloads, or anything else. By default, Express ships with express.static , which does this for you.

All you need to do, is to tell Express where to look for static files. You'll usually want to put
express.static  at the very start of your middleware definitions, so that no time is wasted on eg.
initializing sessions when a request for a static file comes in.

Your directory structure might look like this:

In the above example, express.static  will look in the public  directory for static files, relative to the
app.js  file. For example, if you tried to access https://your-project.com/style.css , it would send the user
the contents of your-project/public/style.css .

You can optionally also specify a prefix for static files, just like for any other Express middleware:

let app = express();

app.set("view engine", "pug");
app.set("views", path.join(__dirname, "views"));

app.use(express.static(path.join(__dirname, "public")));

/* ... rest of the application goes here ... */

your-project
|- node_modules ...
|- public
|  |- style.css
|  `- logo.png
|- views
|  |- homepage.pug
|  `- layout.pug
`- app.js

let app = express();

app.set("view engine", "pug");
app.set("views", path.join(__dirname, "views"));

https://gist.github.com/joepie91/c0069ab0e0da40cc7b54b8c2203befe1#static-files


Now, that same your-project/public/style.css  can be accessed through https://your-
project.com/static/style.css  instead.

An example of using it in your layout.pug:

The slash at the start of /static/style.css  is important - it tells the browser to ask for it relative to the
domain, as opposed to relative to the page URL.

An example of URL resolution without a leading slash:

Page URL: https://your-project.com/some/deeply/nested/page
Stylesheet URL: static/style.css
Resulting stylesheet request URL: https://your-
project.com/some/deeply/nested/static/style.css

An example of URL resolution with the loading slash:

Page URL: https://your-project.com/some/deeply/nested/page
Stylesheet URL: /static/style.css
Resulting stylesheet request URL: https://your-project.com/static/style.css

That's it! You do the same thing to embed images, scripts, link to downloads, and so on.

app.use("/static", express.static(path.join(__dirname, "public")));

/* ... rest of the application goes here ... */

html
    head
        link(rel="stylesheet", href="/static/style.css")
    body
        h1 Hello World, this is #{siteName}!

        if user != null
            p Hi there, #{user.username}!
        else
            p Hi there, unknown person!

        block content
            p This page doesn't have any content yet.

Revision #1
Created 11 December 2024 01:29:10 by joepie91
Updated 11 December 2024 18:44:19 by joepie91


