What is(n't) Docker actually
for?

This article was originally published at

https://gist.github.com/joepie91/1427c8fb172e07251a4bbcl1974cdb9cd.

This article was written in 2016. Some details may have changed since.

A brief listing of some misconceptions about the purpose of Docker.

Secure isolation

Some people try to use Docker as a 'containment system' for either:

e Untrusted user-submitted code, or
e Compromised applications

... but Docker explicitly does not provide that kind of functionality. You get essentially the same

level of security from just running things under a user account.

If you want secure isolation, either use a full virtualization technology (Xen HVM, QEMU/KVM,
VMWare, ...), or a containerization/paravirtualization technology that's explicitly designed to

provide secure isolation (OpenVZ, Xen PV, unprivileged LXC, ...)

"Runs everywhere"

Absolutely false. Docker will not run (well) on:

Old kernels

OpenVZ

Non-*nix systems (without additional virtualization that you could do yourself anyway)
Many other containerized/paravirtualized environments

Exotic architectures like MIPS


https://gist.github.com/joepie91/1427c8fb172e07251a4bbc1974cdb9cd#secure-isolation
https://news.ycombinator.com/item?id=7910117
https://www.stgraber.org/2014/01/17/lxc-1-0-unprivileged-containers/
https://gist.github.com/joepie91/1427c8fb172e07251a4bbc1974cdb9cd#runs-everywhere
https://gist.github.com/joepie91/1427c8fb172e07251a4bbc1974cdb9cd

Docker is just a containerization system. It doesn't do magic. And due to environmental limitations,
chances are that using Docker will actually make your application run in /ess environments.

No dependency conflicts

Sort of true, but misleading. There are many solutions to this, and in many cases it isn't even a
realistic problem.

o Compiled languages: Just compile your binary statically. Same library overhead as
when using Docker, less management overhead.

e Node.js: Completely unnecessary. Dependencies are already local to the project. For
different Node.js versions (although you generally shouldn't need this due to LTS

schedules and polyfills), nvm.

e Python: virtualenv and pyenv.

e Ruby: This one might actually be a valid reason to use some kind of containerization
system. Supposedly tools like rvm exist but frankly I've never seen them work well. Even
then, Docker is probably not the ideal option (see below).

o External dependencies and other stuff: Usually, isolation isn't necessary, as these
applications tend to have extremely lengthy backwards compatibility, so you can just run
a recent version.

If you do need to isolate something and the above either doesn't suffice or it doesn't integrate with
your management flow well enough, you should rather look at something like Nix/NixOS, which
solves the dependency isolation problem in a much more robust and efficient way, and also solves

the problem of state. It does incur management overhead, like Docker would.

Magic scalability

First of all: you probably don't need any of this. 99.99% of projects will never have to scale beyond
a single system, and all you'll be doing is adding management overhead and moving parts that can
break, to solve a problem you never had to begin with.

If you do need to scale beyond a single system, even if that needs to be done rapidly, you probably
still don't get a big benefit from automated orchestration. You set up each server once, and
assuming you run the same 0OS/distro on each system, the updating process will be basically the
same for every system. It'll likely take you more time to set up and manage automated
orchestration, than it would to just do it manually when needed.

The only usecase where automated orchestration really shines, is in cases where you have high
variance in the amount of infrastructure you need - one day you need a single server, the next day
you need ten, and yet another day later it's back down to five. There are extremely few
applications that fall into this category, but even if your application does - there have been


https://gist.github.com/joepie91/1427c8fb172e07251a4bbc1974cdb9cd#no-dependency-conflicts
https://github.com/creationix/nvm/blob/master/README.markdown
https://virtualenv.pypa.io/en/stable/
https://github.com/yyuu/pyenv
https://nixos.org/
http://gfxmonk.net/2015/01/03/nixos-and-stateless-deployment.html
http://gfxmonk.net/2015/01/03/nixos-and-stateless-deployment.html
https://gist.github.com/joepie91/1427c8fb172e07251a4bbc1974cdb9cd#magic-scalability

automated orchestration systems for a long time (Puppet, Chef, Ansible, ...) that don't introduce
the kind of limitations or overhead that Docker does.

No need to rely on a sysadmin

False. Docker is not your system administrator, and you still need to understand what the moving
parts are, and how they interact together. Docker is just a container system, and putting an
application in a container doesn't somehow magically absolve you from having to have somebody
manage your systems.

Revision #1
Created 11 December 2024 18:19:27 by joepie9l
Updated 11 December 2024 18:21:06 by joepie9l


https://gist.github.com/joepie91/1427c8fb172e07251a4bbc1974cdb9cd#no-need-to-rely-on-a-sysadmin

