
Validatem
An ergonomic and modular validation system for Javascript code - argument validation, arbitrary
value validation, everything.

What is Validatem?
Why are there so many packages?

What is Validatem?

The last validation library you'll ever need.

Does every kind of validation, and does it well: it doesn't matter whether you're
validating function arguments, form data, JSON request bodies, configuration files, or
whatever else. As long as it's structured data of some sort, Validatem can deal with it.
Supports the notion of virtual properties in validation errors, which means that even if
your data isn't already structured data (eg. an encoded string of some sort), you can bring
your own parser, and have it integrate cleanly.
Easy to read; both the code that uses Validatem, and the validation error messages that
it produces! Your validation code doubles as in-code format documentation, and users get
clear feedback about what's wrong.
Fully composable: it's trivial to use third-party validators, or to write your own (reusable!)
validators, whether fully custom or made up of a few other validators chained together.
Supports value transformation, which means that you can even encode things like "this
value defaults to X" or "when this value is a number, it will be wrapped like so" in your
validation code; this can save you a bunch of boilerplate, and makes your validation code
even more complete as format documentation.
Validatem has a small and modular core, and combined with its composability, this
means you won't pull any more code into your project than is strictly necessary to make
your validators work! This is also an important part of making Validatem suitable for use
in libraries, eg. for argument validation.
Many off-the-shelf validators are already available! You can find the full list here.
Extensively documented, with clear documentation on what is considered valid, and
what is not. Likewise, the plumbing libraries that you can use to write your own validators
and combinators, are also well-documented.

While Validatem is suitable for any sort of validation, this unique combination of features and
design choices makes it especially useful for validating arguments in the public API of libraries,
unlike other validation libraries!

For example, you might write something like the following (from the icssify library):

This article is derived from the documentation at
https://www.npmjs.com/package/@validatem/core.

module.exports = function (browserify, options) {
	validateArguments(arguments, {
		browserify: required,

https://validatem.cryto.net/modules
https://git.cryto.net/joepie91/icssify/src/master/index.js
https://www.npmjs.com/package/@validatem/core

And calling it like so:

... would then produce an error like this:

		options: allowExtraProperties({
			mode: oneOf(["local", "global"]),
			before: arrayOf([required, isPostcssPlugin]),
			after: arrayOf([required, isPostcssPlugin]),
			extensions: arrayOf([required, isString])
		})
	});

	// Implementation code goes here ...
};

icssify(undefined, {
	mode: "nonExistentMode",
	before: [NaN],
	unspecifiedButAllowedOption: true
})

ValidationError: One or more validation errors occurred:
 - At browserify: Required value is missing
 - At options -> mode: Must be one of: 'local', 'global'
 - At options -> before -> 0: Must be a PostCSS plugin

Why are there so many
packages?

Dependencies often introduce a lot of unnecessary complexity into a project. To avoid that
problem, I've designed Validatem to consist of a lot of small, separately-usable pieces - even much
of the core plumbing has been split up that way, specifically the bits that may be used by validator
and combinator functions.

This may sound counterintuitive; doesn't more dependencies mean more complexity? But in
practice, "a dependency" in and of itself doesn't have a complexity cost at all; it's the code that is
in the dependency where the complexity lies. The bigger a dependency is, the more complexity
there is in that dependency, and the bigger the chance that some part of that complexity isn't even
being used in your project!

By packaging things as granularly as possible, you end up only importing code into your project
that you are actually using. Any bit of logic that's never used, is somewhere in a package that is
never even installed. As an example: using 10 modules with 1 function each, will add less
complexity to your project than using 1 module with 100 functions.

This has a lot of benefits, for both you and me:

Easier to audit/review: When only the code you're actually using is added to your
project, there will be less code for you to review. And because each piece is designed to
be loosely coupled and extensively documented, you can review each (tiny) piece in
isolation; without having to trawl through mountains of source code to figure out how it's
being called and what assumptions are being made there.
Easier to version and maintain: Most of the modules for Validatem will be completely
done and feature-complete the moment they are written, never needing any updates at
all. When occasionally a module does need an update, it will almost certainly not be one
that breaks the API, because the API for each module is so simple that there isn't much to
break.
Easier to upgrade: Because of almost nothing ever breaking the API, it also means that
you'll rarely need to manually upgrade anything, if ever! The vast majority of module
updates can be automatically applied, even many years into the future, even if a new
(breaking) version of validatem/@core is ever released down the line.

This article is derived from the documentation at
https://www.npmjs.com/package/@validatem/core.

https://gist.github.com/joepie91/7f03a733a3a72d2396d6#coupled
https://www.npmjs.com/package/@validatem/core

Easier to fork: If for any reason you want to fork any part of Validatem, you can do so
easily - without also having to maintain a big pile of validators, combinators, internals, and
so on. You only need to fork and maintain the bit where you want to deviate from the
official releases.

Of course, there being so many packages means it can be more difficult to find the specific
package you want. That is why the Validatem website has an extensive, categorized list of all the
validators, combinators and utilities available for Validatem. Both officially-maintained ones, and
third-party modules!

https://validatem.cryto.net/modules

