
Projects
Documentation about various (technical) projects that I run or am involved in in some way.

seekseek.org

What is seekseek?
How does it work?

Validatem

What is Validatem?
Why are there so many packages?

Promistreams

What are Promistreams?
Known issues
How do I use Promistreams?
The behaviours and responsibilities of different types of streams
Missing from this documentation
Commonly useful Promistream packages
Troubleshooting
Specification (draft)
What to expect from the Promistreams beta phase
Example project: Scraping XML sitemaps

seekseek.org
A collection of specialized search engines

seekseek.org

What is seekseek?
SeekSeek is a search engine project. But instead of being one general search engine, the goal is to
build many smaller, highly specialized search engines with specially designed search interfaces, to
work optimally for the specific kind of information you're looking for. The focus is on types
information which are currently hard to navigate.

There is a common philosophy to all of these search engines: they must be fast, free of clutter, free
of advertising and sponsored placements, with an openly available dataset and codebase so that
anyone can replicate the work and improve on it.

The first, and currently only, search engine on seekseek is the datasheet search engine, which
lets you find datasheets very quickly by entering a model number - it finds results as you type, and
directly presents you with a download button.

Most search engines on seekseek will be scraping data from many different sources, with custom-
made scrapers to ensure data quality. In the future, there will be a mechanism for people to
contribute their own data to an open dataset.

The next planned search engine to implement, is a price comparison engine. The work on this is
still in progress, and if you know of sources for price feeds, please contact me!

seekseek.org

How does it work?

The technology
So... what makes SeekSeek tick? Let's get the boring bits out of the way first:

The whole thing is written in Javascript, end-to-end, including the scraper.
Both the scraping server and the search frontend server run on NixOS.
PostgreSQL is used as the database, both for the scraper and the search frontends
(there's only one frontend the time of writing).
The search frontends use React for rendering the UI; server-side where possible, browser-
side where necessary.
Server-side rendering is done with a fork of express-react-views .
Most scraping tasks use bhttp as the HTTP client, and cheerio (a 'headless'
implementation of the jQuery API) for data extraction.

None of that is really very interesting, but people always ask about it. Let's move on to the
interesting bits!

The goal
Before we can talk about the technology, we need to talk about what the technology was built for.
SeekSeek is radical software. From the ground up, it was designed to be FOSS, collaborative and
community-driven, non-commercial, ad-free, and to improve the world - in the case of SeekSeek
specifically, to improve on the poor state of keyword-only searches by providing highly specialized
search engines instead!

The following text was originally published on the seekseek website, at
https://seekseek.org/technology.

The information on this page is currently changing. While the current deployment of
seekseek still does use the technology as described here, a next version is currently being
tested which has some significant architectural changes to better achieve the goals stated
below, and to be more maintainable in the long term.

http://cryto.net/~joepie91/manifesto.html
https://seekseek.org/technology

But... that introduces some unusual requirements:

It needs to be resource-conservative: While it doesn't need to be perfectly optimized,
it shouldn't require absurd amounts of RAM or CPU power either. It should be possible to
run the whole thing on a desktop or a cheap server - the usual refrain of "extra servers are
cheaper than extra developers", a very popular one in startups, does not apply here.
It needs to be easy to spin up for development: The entire codebase needs to be
self-contained as much as reasonably possible, requiring not much more than an npm
install to get everything in place. No weirdly complex build stacks, no assumptions about
how the developer's system is laid out, and things need to be debuggable by someone
who has never touched it before. It needs to be possible for anybody to hack on it, not just
a bunch of core developers.
It needs to be easy to deploy and maintain: It needs to work with commodity
software on standard operating systems, including in constrained environments like
containers and VPSes. No weird kernel settings, no complex network setup requirements.
It needs to Just Work, and to keep working with very little maintenance. Upgrades need to
be seamless.
It needs to be flexible: Time is still a valuable resource in a collaborative project -
unlike a company, we can't assume that someone will be able to spend a working day
restructuring the entire codebase. Likewise, fundamental restructuring causes
coordination issues across the community, because a FOSS community is not a
centralized entity with a manager who decides what happens. That means that the core
(extensible) architecture needs to be right from the start, and able to adapt to changing
circumstances, more so because scraping is involved.
It needs to be accessible: It should be possible for any developer to build and
contribute to scrapers; not just specialized developers who have spent half their life
working on this sort of thing. That means that the API needs to be simple, and there needs
to be space for someone to use the tools they are comfortable with.

At the time of writing, there's only a datasheet search engine. However, the long-term goal is for
SeekSeek to become a large collection of specialized search engines - each one with a tailor-made
UI that's ideal for the thing being searched through. So all of the above needs to be satisfied not
just for a datasheet search engine, but for a potentially unlimited series of search engines, many of
which are not even on the roadmap yet!

And well, the very short version is that none of the existing options that I've evaluated even came
close to meeting these requirements. Existing scraping stacks, job queues, and so on tend to very
much be designed for corporate environments with tight control over who works on what. That
wasn't an option here. So let's talk about what we ended up with instead!

The scraping server
The core component in SeekSeek is the 'scraping server' - an experimental project called srap that
was built specifically for SeekSeek; though also designed to be more generically useful. You can

https://git.cryto.net/joepie91/srap

think of srap as a persistent job queue that's optimized for scraping.

So what does that mean? The basic idea behind srap is that you have a big pile of "items" - each
item isn't much more than a unique identifier and some 'initial data' to represent the work to be
done. Each item can have zero or more 'tags' assigned, which are just short strings. Crucially, none
of these items do anything yet - they're really just a mapping from an identifier to some arbitrarily-
shaped JSON.

The real work starts with the scraper configuration. Even though it's called a 'configuration', it's
really more of a codebase - you can find the configuration that SeekSeek uses here. You'll notice
that it defines a number of tasks and seed items. The seed items are simply inserted automatically
if they don't exist yet, and define the 'starting point' for the scraper.

The tasks, however, define what the scraper does. Every task represents one specific operation in
the scraping process; typically, there will be multiple tasks per source. One to find product
categories, one to extract products from a category listing, one to extract data from a product
page, and so on. Each of these tasks has its own concurrency settings, as well as a TTL (Time-To-
Live) that defines after how long the scraper should revisit it.

Finally, what wires it all together are the tag mappings. These define what tasks should be
executed for what tags - or more accurately, for all the items that are tagged with those tags. Tags
associated with items are dynamic, they can be added or removed by any scraping task. This
provides a huge amount of flexibility, because any task can essentially queue any other task, just
by giving an item the right tag. The scraping server then makes sure that it lands at the right spot
in the queue at the right time - the task itself doesn't need to care about any of that.

Here's a practical example, from the datasheet search tasks:

The initial seed item for LCSC is tagged as lcsc:home .
The lcsc:home tag is defined to trigger the lcsc:findCategories task.
The lcsc:findCategories task fetches a list of categories from the source, and creates an
item tagged as lcsc:category for each.
The lcsc:category tag is then defined to trigger the lcsc:scrapeCategory task.
The lcsc:scrapeCategory task (more or less) fetches all the products for a given category,
and creates items tagged as lcsc:product . Importantly, because the LCSC category listings
already include the product data we need, these items are immediately created with their
full data - there's no separate 'scape product page' task!
The lcsc:product tag is then defined to trigger the lcsc:normalizeProduct task.
The lcsc:normalizeProduct task then converts the scraped data to a standardized
representation, which is stored with a result:datasheet tag. The scraping flows for other
data sources also produce result:datasheet items - these are the items that ultimately end
up in the search frontend!

One thing that's not mentioned above is that lcsc:scrapeCategory doesn't actually scrape all of the
items for a category - it just scrapes a specific page of them! The initial lcsc:findCategories task would

https://git.cryto.net/seekseek/scraper-config
https://git.cryto.net/seekseek/scraper-config/src/branch/master/index.js

have created as many of such 'page tasks' as there are pages to scrape, based on the amount of
items a category is said to have.

More interesting, though, is that the scraping flow doesn't have to be this unidirectional - if the
total amount of pages could only be learned from scraping the first page, it would have been
entirely possible for the lcsc:scrapeCategory task to create additional lcsc:category items! The tag-
based system makes recursive discovery like this a breeze, and because everything is keyed by a
unique identifier and persistent, loops are automatically prevented.

You'll probably have noticed that none of the above mentions HTTP requests. That's because srap
doesn't care - it has no idea what HTTP even is! All of the actual scraping logic is completely
defined by the configuration - and that's what makes it a codebase. This is the scraping logic for
extracting products from an LCSC category, for example. This is also why each page is its own
item; that allows srap to rate-limit requests despite having absolutely no hooks into the HTTP
library being used, by virtue of limiting each task to 1 HTTP request.

There are more features in srap, like deliberately invalidating past scraping results, item merges,
and 'out of band' task result storage, but these are the basic concepts that make the whole thing
work. As you can see, it's highly flexible, unopinionated, and easy to collaboratively maintain a
scraper configuration for - every task functions more or less independently.

The datasheet search frontend
If you've used the datasheet search, you've probably noticed that it's really fast, it almost feels like
it's all local. But no, your search queries really are going to a server. So how can it be that fast?

It turns out to be surprisingly simple: by default, the search is a prefix search only. That means that
it will only search for items that start with the query you entered. This is usually what you want
when you search for part numbers, and it also has some very interesting performance implications
- because a prefix search can be done entirely on an index!

There's actually very little magic here - the PostgreSQL database that runs behind the frontend
simply has a (normalized) index on the column for the part number, and the server is doing a LIKE
'yourquery%' query against it. That's it! This generally yields a search result in under 2 milliseconds,
ie. nearly instantly. All it has to do is an index lookup, and those are fast.

On the browser side, things aren't much more complicated. Every time the query changes, it
makes a new search request to the server, cancelling the old one if one was still in progress. When
it gets results, it renders them on the screen. That's it. There are no trackers on the site, no weird
custom input boxes, nothing else to slow it down. The result is a search that feels local :)

The source code

https://git.cryto.net/seekseek/scraper-config/src/branch/master/lib/lcsc/task/scrape-category.js
https://seekseek.org/datasheets

Right now, the source code for all of these things lives across three repositories:

joepie91/srap - the scraping server.
seekseek/scraper-config - the configuration and scraping logic that's used for SeekSeek.
seekseek/ui - the search frontend (including search server!) for SeekSeek.

At the time of writing, documentation is still pretty lacking across these repositories, and the code
in the srap and UI repositories in particular is pretty rough! This will be improved upon quite soon,
as SeekSeek becomes more polished.

Final words
Of course, there are many more details that I haven't covered in this post, but hopefully this gives
you an idea of how SeekSeek is put together, and why!

Has this post made you interested in working on SeekSeek, or maybe your own custom srap-based
project? Drop by in the chat! We'd be happy to give you pointers :)

https://git.cryto.net/joepie91/srap
https://git.cryto.net/seekseek/scraper-config
https://git.cryto.net/seekseek/ui
https://matrix.to/#/#seekseek:pixie.town?via=pixie.town&via=matrix.org&via=librepush.net

Validatem
An ergonomic and modular validation system for Javascript code - argument validation, arbitrary
value validation, everything.

Validatem

What is Validatem?

The last validation library you'll ever need.

Does every kind of validation, and does it well: it doesn't matter whether you're
validating function arguments, form data, JSON request bodies, configuration files, or
whatever else. As long as it's structured data of some sort, Validatem can deal with it.
Supports the notion of virtual properties in validation errors, which means that even if
your data isn't already structured data (eg. an encoded string of some sort), you can bring
your own parser, and have it integrate cleanly.
Easy to read; both the code that uses Validatem, and the validation error messages that
it produces! Your validation code doubles as in-code format documentation, and users get
clear feedback about what's wrong.
Fully composable: it's trivial to use third-party validators, or to write your own (reusable!)
validators, whether fully custom or made up of a few other validators chained together.
Supports value transformation, which means that you can even encode things like "this
value defaults to X" or "when this value is a number, it will be wrapped like so" in your
validation code; this can save you a bunch of boilerplate, and makes your validation code
even more complete as format documentation.
Validatem has a small and modular core, and combined with its composability, this
means you won't pull any more code into your project than is strictly necessary to make
your validators work! This is also an important part of making Validatem suitable for use
in libraries, eg. for argument validation.
Many off-the-shelf validators are already available! You can find the full list here.
Extensively documented, with clear documentation on what is considered valid, and
what is not. Likewise, the plumbing libraries that you can use to write your own validators
and combinators, are also well-documented.

While Validatem is suitable for any sort of validation, this unique combination of features and
design choices makes it especially useful for validating arguments in the public API of libraries,
unlike other validation libraries!

For example, you might write something like the following (from the icssify library):

This article is derived from the documentation at
https://www.npmjs.com/package/@validatem/core.

https://validatem.cryto.net/modules
https://git.cryto.net/joepie91/icssify/src/master/index.js
https://www.npmjs.com/package/@validatem/core

And calling it like so:

... would then produce an error like this:

module.exports = function (browserify, options) {
	validateArguments(arguments, {
		browserify: required,
		options: allowExtraProperties({
			mode: oneOf(["local", "global"]),
			before: arrayOf([required, isPostcssPlugin]),
			after: arrayOf([required, isPostcssPlugin]),
			extensions: arrayOf([required, isString])
		})
	});

	// Implementation code goes here ...
};

icssify(undefined, {
	mode: "nonExistentMode",
	before: [NaN],
	unspecifiedButAllowedOption: true
})

ValidationError: One or more validation errors occurred:
 - At browserify: Required value is missing
 - At options -> mode: Must be one of: 'local', 'global'
 - At options -> before -> 0: Must be a PostCSS plugin

Validatem

Why are there so many
packages?

Dependencies often introduce a lot of unnecessary complexity into a project. To avoid that
problem, I've designed Validatem to consist of a lot of small, separately-usable pieces - even much
of the core plumbing has been split up that way, specifically the bits that may be used by validator
and combinator functions.

This may sound counterintuitive; doesn't more dependencies mean more complexity? But in
practice, "a dependency" in and of itself doesn't have a complexity cost at all; it's the code that is
in the dependency where the complexity lies. The bigger a dependency is, the more complexity
there is in that dependency, and the bigger the chance that some part of that complexity isn't even
being used in your project!

By packaging things as granularly as possible, you end up only importing code into your project
that you are actually using. Any bit of logic that's never used, is somewhere in a package that is
never even installed. As an example: using 10 modules with 1 function each, will add less
complexity to your project than using 1 module with 100 functions.

This has a lot of benefits, for both you and me:

Easier to audit/review: When only the code you're actually using is added to your
project, there will be less code for you to review. And because each piece is designed to
be loosely coupled and extensively documented, you can review each (tiny) piece in
isolation; without having to trawl through mountains of source code to figure out how it's
being called and what assumptions are being made there.
Easier to version and maintain: Most of the modules for Validatem will be completely
done and feature-complete the moment they are written, never needing any updates at
all. When occasionally a module does need an update, it will almost certainly not be one
that breaks the API, because the API for each module is so simple that there isn't much to
break.
Easier to upgrade: Because of almost nothing ever breaking the API, it also means that
you'll rarely need to manually upgrade anything, if ever! The vast majority of module
updates can be automatically applied, even many years into the future, even if a new

This article is derived from the documentation at
https://www.npmjs.com/package/@validatem/core.

https://gist.github.com/joepie91/7f03a733a3a72d2396d6#coupled
https://www.npmjs.com/package/@validatem/core

(breaking) version of validatem/@core is ever released down the line.
Easier to fork: If for any reason you want to fork any part of Validatem, you can do so
easily - without also having to maintain a big pile of validators, combinators, internals, and
so on. You only need to fork and maintain the bit where you want to deviate from the
official releases.

Of course, there being so many packages means it can be more difficult to find the specific
package you want. That is why the Validatem website has an extensive, categorized list of all the
validators, combinators and utilities available for Validatem. Both officially-maintained ones, and
third-party modules!

https://validatem.cryto.net/modules

Promistreams
Easy-to-use, composable, universal streams for Javascript.

Promistreams

What are Promistreams?

This is a brief explanation of how Promistreams work, and how to use them, in their current early-
ish state.

The core model is pretty well-defined by this point, and major changes in internal structure are not
expected to happen. Compatibility is unlikely to be broken in major ways up to the 1.0.0 release,
but occasionally you may need to update a few of the libraries at once to keep things working
together perfectly. This will typically only involve a version bump, no code changes.

What to expect
Promistreams are pull-based streams. This means that a Promistream does nothing until a value is
requested from it, directly or indirectly. This mirrors how streams work in many other languages,
and is unlike Node.js streams.

Another thing that is unlike Node.js streams, is that a Promistream is always piped into exactly one
other stream at a time; though which stream this is, may change over time.

Additionally, Promistreams provide the following features:

Promise-oriented; 'reading'/running a pipeline returns a Promise, and all internal callbacks
work with Promises (including async/await) out of the box. No manual callback wiring!
Well-defined and consistent error handling.
Well-defined and consistent cancellation/abort behaviour, including automatically on error
conditions.
Safe concurrent use, ie. having multiple "in-flight" values in the pipeline at once.

This article (and most of the others in this chapter) were derived from a formerly-private
draft. It is still subject to change, as Promistreams are polished further towards their first
stable release. Despite this, you can test out Promistreams today!

Promistreams have entered the beta-testing phase! Make sure to read "What to expect from
the Promistreams beta phase" before you start using them, so that you know what to
expect, and where to report problems. On your left, you will find a menu with several other
articles to help you get started.

https://gist.github.com/joepie91/f4f9a56d37a5935833c242defd4f732c#what-to-expect
https://wiki.slightly.tech/books/projects/page/what-to-expect-from-the-promistreams-beta-phase
https://wiki.slightly.tech/books/projects/page/what-to-expect-from-the-promistreams-beta-phase

Full interoperability with arbitrary other stream/sequence-shaped types; currently
iterables, async iterables and Node.js streams are implemented, but others will follow
(please let me know if you need any particular ones!).
Branching and converging/merging streams, supporting arbitrary distribution patterns, to
accommodate cases where one stream needs to be piped into multiple other streams or
vice versa.
Each stream has precise control over when it reads from upstream, and provides results
to downstream.
Composability of streams.

What not to expect
There are a few things that Promistreams do not prioritize in their design.

Maximum performance. While of course stream implementations will be optimized as much as
possible, and a simple core model helps to ensure that, Promistreams don't aim for performance as
the #1 goal. This is because doing so would require serious tradeoffs on usability and reliability. In
practice, the performance is still quite good, and more than enough for the majority of real-world
usecases. Likewise, a lot of work has gone into not making the internals more complex than
necessary. But if you are trying to minimize every byte of memory and clock cycle, Promistreams
are probably not the right choice for you.

API familiarity. While Promistreams take inspiration from a number of other stream
implementations - most notable pull-streams and futures.rs streams - they do not aim to mirror any
one particular streams API. Instead, the API is optimized for usability of the specific model that
Promistreams implement, and specifically their use in Javascript.

Aesthetics. While the API is designed to be predictable and easy to reason about, and to roughly
represent a pipeline, it does not necessarily look aesthetically nice, and some patterns -
particularly branching and diverging - may look at bit strange or ugly. The choice was made to
optimize for predictability and ergonomics over aesthetic quality, where these goals conflict.

Seekable streams. Like most streams implementations, Promistreams are read-to-end streams,
and do not support seeking within streams (although they do support infinite streams, including
queues!). If you need seeking capabilities, I would recommend to create a custom abstraction that
eg. lets you specify a starting offset and then dispenses a Promistream that starts reading from
that offset, and uses happy aborts to stop reading. This way, you get the ergonomics of a
Promistream, but can still read specific segments of a resource.

Non-object mode. Node.js streams have two modes; 'regular' mode (Buffers/strings only) and
'object' mode (everything else). Promistreams only have object mode. You can still work with
Buffers and strings as before, the streams design is just not specially aware of them, and how they
are handled is entirely decided by the specific streams you use.

So this is a library?
Not exactly. I am building this as an interoperable specification, and it's designed so that no
libraries are required to make use of them; the internal structure of a Promistream is very simple,
and contains the absolute minimum complexity to have reliably composable streams.

That having been said, libraries are provided at every level of abstraction, which implement this
specification - including high-level streams for specific usecases but also low-level utilities. This
means that you can use it like a library if you want to, but you can also use it as a spec. These
libraries are highly modular; you only install the parts you actually need. Other future
implementations of the specification may make different distribution choices.

Currently, the spec is not complete, and is still subject to change. In practice that means that only
use-as-a-library is currently viable for real-world projects. The spec is partly written and is pending
more real-world experimentation with the current implementation, to find the rough edges and
polish them before publishing the specification and 'locking in' the design.

Likewise, many of the libraries are currently missing proper documentation. However, almost every
Promistream library that currently exists includes an example.js that demonstrates how to use that
particular library or stream in your code. Combined with the introduction in this post, that should
get you quite far! And if you're stuck, don't hesitate to ask - those questions also help to build out
the documentation better.

https://gist.github.com/joepie91/f4f9a56d37a5935833c242defd4f732c#so-this-is-a-library

Promistreams

Known issues
Currently there is a single known issue: a design change was fairly recently made, in the process of
formalizing the spec, where it was decided that a 'happy abort' (ie. a cancellation under expected
circumstances, like the successful completion of a process that did not need to consume all
upstream data) should be exposed by the pipeline as an EndOfStream (as if the source stream ran
out of data entirely) instead of an Aborted .

You may run into some older implementations of source streams that still implement the old
behaviour, as this change has not been applied everywhere yet. Please report it when this
happens, and they will be fixed promptly!

Promistreams

How do I use Promistreams?
Here's a simple example of a valid Promistream pipeline:

That's it! That's all there is to it. The call to pipe returns a Promise, and you can await it like any
other Promise - if something goes wrong anywhere inside the pipeline, it automatically aborts the
stream, running any teardown logic for each stream in the process, and then throws the original
error that caused the failure. Otherwise, you get back whatever output the collect stream produced
- which is simply an array of every value it has read from upstream.

In this example, the fromIterable is what is known as the source stream - it provides the original
data - and the collect stream is what's known as the sink stream, which is responsible for reading
out the entire pipeline until it is satisfied, which usually means "the source stream has run out of
data" (but it can choose to behave differently!). The streams inbetween, just map in this case, are
transform streams.

Look carefully at the pipe invocation, and how read is called on it. This is necessary to 'kickstart'
the pipeline. The only thing that pipe does is to compose a series of Promistreams into one
combined stream, automatically wiring up both ends, and you still need to call read on the result
to cause the last stream in that pipeline to start reading stuff. Doing so is basically equivalent to
calling read on the collect stream directly, with the streams before it as an argument, the pipe

"use strict";

const pipe = require("@promistream/pipe");
const fromIterable = require("@promistream/from-iterable");
const map = require("@promistream/map");
const collect = require("@promistream/collect");

(async function() {
	let numbers = await pipe([
		fromIterable([1, 2, 3, 4]),
		map((number) => number * 2),
		collect()
]).read();

	console.log(numbers); // [2, 4, 6, 8]
})();

function just wires this up for you.

Now this example is not very interesting, because everything is synchronous. But it still works the
exact same if we do something asynchronous:

We've replaced the map callback with one that is asynchronous, and it still works the exact same
way! Of course in a real-world project it would be absurd to use a remote service for doubling
numbers, but this keeps the example simple to follow. The asynchronous logic could be anything -
as long as it returns a Promise.

What if we want to reuse this logic in multiple pipelines? We could just have a function that
generates a custom map stream on-demand. It would need to be a function that creates one,
because each pipeline would still need its own map instance - streams are single-use! It might look
like this:

"use strict";

const pipe = require("@promistream/pipe");
const fromIterable = require("@promistream/from-iterable");
const map = require("@promistream/map");
const collect = require("@promistream/collect");

(async function() {
	let numbers = await pipe([
		fromIterable([1, 2, 3, 4]),
		map(async (number) => await doubleNumberRemotely(number)), // I have no idea why you would want to do
this
		collect()
]).read();

	console.log(numbers); // [2, 4, 6, 8]
})();

"use strict";

const pipe = require("@promistream/pipe");
const fromIterable = require("@promistream/from-iterable");
const map = require("@promistream/map");
const collect = require("@promistream/collect");

function double() {
	// We're using the synchronous version here again, because doubling numbers remotely was a terrible idea!

As you can see, it's all just functions returning Promises (or values, or throwing errors - the rules
are the same as within any async context).

But what if we want to make a more complicated custom stream? Let's filter out all the numbers
that are a multiple of ten!

	return map((number) => number * 2);
}

(async function() {
	let numbers = await pipe([
		fromIterable([1, 2, 3, 4]),
		double()
		collect()
]).read();

	console.log(numbers); // [2, 4, 6, 8]
})();

"use strict";

const pipe = require("@promistream/pipe");
const fromIterable = require("@promistream/from-iterable");
const map = require("@promistream/map");
const filter = require("@promistream/filter");
const collect = require("@promistream/collect");

function doubleAndFilter() {
	return pipe([
		map((number) => number * 2),
		filter((number) => number % 10 > 0)
]);
}

(async function() {
	let numbers = await pipe([
		fromIterable([1, 2, 3, 4]),
		doubleAndFilter()
		collect()
]).read();

Wait, what's pipe doing there? Well, think back to this earlier comment:

We're now getting to the reason why this is the case, and why the composing and reading of
pipelines are split up! Because the composing doesn't cause any reads, and it doesn't require a
complete pipeline (with a data source and a sink), you can also use it to compose together multiple
streams into a single reusable stream, that can then be inserted into another pipeline!

Since we're now both mapping and filtering, this is exactly what we need - some way to represent
those two streams, in sequence, with pre-specificed callbacks, exposed externally as a single
custom stream - and so we use pipe to accomplish that. The resulting pipeline works just as if you
were to manually insert both of those streams after one another, with the same behaviours and
error handling. This is the key to what makes Promistreams composable.

This pretty much covers the basic use of Promistreams. There are many different types of streams,
including branching streams, that change the exact behaviour of the pipeline; but the basic
operation always looks like this. Pipe together array of streams, call read on the resulting pipeline
once it's finalized, or return the un-read pipeline if it's meant to be used as a composite stream.
Even the more complex pipelines still work like this.

If you want to see what a more real-world example would look like, you may also want to look at
the example project tutorial.

	console.log(numbers); // [2, 4, 6, 8]
})();

The only thing that pipe does is to compose a series of Promistreams into one
combined stream, automatically wiring up both ends, and you still need to call
read on the result to cause the last stream in that pipeline to start reading stuff.

“

https://wiki.slightly.tech/books/projects/page/example-project-scraping-xml-sitemaps

Promistreams

The behaviours and
responsibilities of different
types of streams
While you don't need to know much about the internals of Promistreams to use the libraries, there
are a few things that are useful to know, mostly around which streams are responsible for what. In
the Promistreams design, much of the behaviour is 'emergent'; it's not enforced by some central
runtime or orchestrator, but rather is the emergent result of different parts of the system behaving
in certain defined ways.

For example, you might think that the pipe function does error handling, but it doesn't! All of the
error handling is emergent from the design, and simply a result of how Promises work - a pipeline is
essentially just a very long chain of nested Promise callbacks, internally. All that pipe does is a bit
of bind magic to pass the previous stream into the next one.

However, some things do need to be defined to make things like error handling and concurrency
work correctly. The decision was made to shift this burden to the source and sink streams, as these
are the least likely to require a custom implementation - the result is that a transform stream is not
much more than an async function, and does not need to care about error handling at all if it
doesn't want to act on those errors. Errors will simply propagate through them with the usual
throw/rejection mechanisms of Promises.

The source and sink streams need to do a bit more; they are responsible for emitting 'markers' and
handling rejections, respectively. The 'markers' are EndOfStream and Aborted , and these are
rejected and propagated like an error would be, but they are specially recognized by (some of the)
streams inbetween, as well as the sink stream. They're used for teardown code and, in the case of
the sink stream, to generate the appropriate 'consumer-facing' error to throw from the pipeline as
a whole.

The basic read process looks like this: you call the read function on the pipeline, which calls the
read function on the last stream in it, the sink stream. The sink stream is responsible for
'driving' the pipeline in some way, though exactly what that looks like will depend on the stream
implementation. It is valid for a read on the pipeline to only trigger a single upstream read, but that
is generally not useful - more typically, the sink stream will start a read loop. The stream
upstream from it will call read on its upstream, and so on, recursively, until a value is read from
the source stream. Any stream inbetween may modify the result, discard values, combine them,

read more times, read less times, and so on. Once the source stream runs out of values, it will
start dispensing EndOfStream markers, which will propagate down like an error, and ultimately
signal to the sink stream that it should stop any read loops.

The basic abort process looks like this: abort is called on any stream in the pipeline, that stream
calls abort on its upstream, which does the same recursively, until it ends up at the source
stream. The source stream internally 'latches' into 'aborted' mode, and starts dispensing Aborted
markers on subsequent reads, which are thrown/rejected and therefore propagate back
downstream, until they eventually end up at the sink stream, which unpacks the original error
stored within the Aborted marker and throws it from its read call (and therefore the pipeline's read
call). Subsequent attempts at reading the sink stream will throw the Aborted marker itself, so the
original error is not duplicated.

(The details are more complicated, and if the abort is a happy abort, rather than one based on an
Error, the same latching occurs but with EndOfStream instead of Aborted . Further details will be in
the spec.)

When any stream in the pipeline throws an error or rejects a Promise in its read callback, this
propagates downstream like any error would, until it is received by the sink stream. It then
initiates the abort process described above.

Note that because Aborted and EndOfStream markers are thrown/rejected, transform streams
inbetween the source and the sink do not need to care about them, unless they intend to
implement some kind of teardown logic, in which case they can be intercepted and then re-thrown.
But normally they propagate like any rejection would in a chain of Promises, because that is
essentially what they are!

Promistreams

Missing from this
documentation
Here are some of the things not (yet) covered in this documentation:

Interoperating with Node streams (see example.js in @promistream/from-node-stream - this is
pretty trivial and it's even entirely valid to only use Node streams in your pipeline, using
this wrapper)
Concurrency (this is illustrated in the example.js for the @promistream/parallelize package)
Branching (this is illustrates in the example.js of various @promistream/fork-* packages)
Converging/merging (currently only illustrated in the example.js of the @promistream/merge-
concatenate package - merge streams are still being worked on)
The exact details of what source/sink streams are responsible for (part of the unfinished
spec)
How the internal peek API works (this is responsible for making concurrency work reliably)

Promistreams

Commonly useful
Promistream packages
All of the existing Promistream packages can be found in the package list, but they're not very
well-explained. The majority of these should be functional and have an example.js demonstrating
their use.

Here's a selection of the packages you are most likely to need:

Common cases
@promistream/pipe : the core package that pipes streams together into a pipeline.
Technically optional but strongly recommended to use.
@promistream/debug : transform stream that simply prints everything that goes through it,
optionally with a label. Only for pipeline debugging use.
@promistream/simple-source : low-level source stream abstraction. Implements the
specification responsibilities, leaving you to worry only about how to produce values.
Suitable for the majority of usecases.
@promistream/simple-sink : low-level sink stream abstraction. Same as above, but on the
other end.
@promistream/map : like the array method, but as a Promistream. Also functions as a
general-purpose low-level transform stream.
@promistream/filter : like the array method, but as a Promistream.
@promistream/collect : high-level sink stream, that simply read-loops and collects all read
values into an array, then resolves with that array. Often what you want. Also a good
example of @promistream/simple-sink use, internally.
@promistream/from-node-stream : source/sink/transform wrappers for all types of Node.js
streams, to integrate them with a Promistream pipeline.
@promistream/from-iterable : creates source stream from a synchronous or asynchronous
iterable (including arrays).
@promistream/range-numbers : high-level source stream, generates numbers in a specified
range.

Complex cases

https://www.npmjs.com/org/promistream
https://gist.github.com/joepie91/f4f9a56d37a5935833c242defd4f732c#common-cases
https://gist.github.com/joepie91/f4f9a56d37a5935833c242defd4f732c#complex-cases

@promistream/buffer : reads an array (of 0 or more items) from upstream, and then
dispenses the values in that array (if any) one by one on subsequent reads by its
downstream. Often composed with others.
@promistream/dynamic : lets you pass a value through different streams/pipelines depending
on the value. Finicky and high-overhead; usually fork-and-merge is a better option.
@promistream/parallelize : lets you run N reads (up to and including Infinity) simultaneously.
@promistream/sequentialize : forces inbound reads from downstream to occur sequentially,
'protecting' its upstream. Mandatory to use if your stream does not support parallel
operation and you intend to publish it, or you use parallelize elsewhere in your pipeline.
@promistream/rate-limit : as the name implies, throttles reads going through it but leaves
results otherwise unmodified.
@promistream/simple-queue : high-level source stream that functions as a task queue; items
can be added externally.

Specific usecases
@promistream/read-file : as the name implies. Produces buffers.
@promistream/decode-string : as the name implies. Takes buffers, produces strings.
@promistream/split-lines : as the name implies. Takes strings.
@promistream/parse-xml : streaming XML parser.

There are other Promistream packages, and there will be many more! These are just some of the
ones currently available, that you're likely to need at some point.

https://gist.github.com/joepie91/f4f9a56d37a5935833c242defd4f732c#specific-usecases

Promistreams

Troubleshooting
My process just exits and/or my pipeline
doesn't run!
You most likely forgot to call .read() on the pipeline. This is easy to forget. I still do it regularly!

I get a weird error!
All @promistream libraries are meant to produce clear and understandable errors. If they do not,
that is a bug. Please report it!

(Currently this is most likely to happen because of a library not being updated for a newer revision
of the specification; I'll help figure out what's going on if you report it.)

How do I...?
Is there an off-the-shelf package for it? Give that a shot first. If there isn't, or it doesn't work as you
expect, please let me know and I'll help you figure it out!

https://gist.github.com/joepie91/f4f9a56d37a5935833c242defd4f732c#my-process-just-exits-andor-my-pipeline-doesnt-run
https://gist.github.com/joepie91/f4f9a56d37a5935833c242defd4f732c#i-get-a-weird-error
https://gist.github.com/joepie91/f4f9a56d37a5935833c242defd4f732c#how-do-i
https://www.npmjs.com/~promistream

Promistreams

Specification (draft)

Core concept
A Promistream is, at its core, simply a chain of Promises established through recursive
asynchronous calls. A read is requested from the last stream in a pipeline (the "sink"), it requests a
read from the stream upstream from it, which requests a read from the stream upstream to it, and
so on - until the first stream in the pipeline, the "source", is reached.

Each stream along the way may choose to modify both the value itself, as well as the
characteristics of it being produced; it may be delayed, filtered, turned into multiple values, or any
other transformation that the project requires.

Therefore, the flow (simplified) is as follows:

Definitions
This is an overview of the terms used in this specification, as a reading aid; note that their
descriptions here are limited, and may not be sufficient to implement their concepts. Further
technical definition may exist elsewhere in the specification.

Stream: An object which defines (at least) a function that reads a value from another
stream and/or yields a value upon being read.
Pipeline: A sequence of streams, which reads and their resulting values propagate
through, potentially being transformed in the process.
Source stream: The first stream in a pipeline. This is where values originally originate
from. They may be generated on-the-fly, or originate from an external source of some
kind.
Sink stream: The last stream in a pipeline. This is where the read is originally initiated.
Transform stream: A stream which exists in a pipeline somewhere inbetween a source
and a sink stream.

This is a draft. It is neither complete nor, probably, correct.

USER CODE --read--> SINK STREAM --read--> TRANSFORM STREAM(S) --read--> SOURCE STREAM --value--
> TRANSFORM STREAM(S) --value--> SINK STREAM --value--> USER CODE

https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#core-concept
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#definitions

Pipeline completion: The point where an entire pipeline has been successfully read to
its end; as defined by its source stream. A pipeline has only fully completed once all
internal buffers on all streams in the pipeline have run out.
Pipeline termination: The point where a pipeline has been terminated or aborted
prematurely. Again, it has only fully terminated once all internal buffers on all streams in
the pipeline have run out.
Buffer: A mechanism that any stream may have, where it internally stores some value(s)
that are already known, but that it does not intend to yield or process until a next read.
Frequently used to handle values that result in multiple transformed values (or vice
versa), as well as format parsing.
Forking stream: A stream which yields multiple other 'forks' (which are also streams),
across which values are distributed or divided in some manner specific to the forking
stream (mirroring, round-robin, etc.).
Converging stream: The inverse of a forking stream; it takes multiple 'forks' and
combines them back into one coherent stream, in some manner specific to the converging
stream (combining, interspersing, etc.).
Upstream: The stream(s) that come before the stream in question, ie. towards the
direction of the source stream.
Downstream: The stream(s) that come after the stream in question, ie. towards the
direction of the sink stream.
EndOfStream marker: A special error type that signals that the end of the (source)
stream has been reached successfully. There will be no more data to read.
Aborted marker: A special error type that signals that the pipeline has been terminated
(ie. aborted) prematurely; either due to expected conditions, or due to an unexpected
error.
Side-effects: Any kind of externally observable change or interaction that a stream
makes outside of its locally-defined state. This includes things like database queries,
filesystem operations, but also eg. changing global variables or some other value that is
'owned' by something other than the stream.
Error: Any object that inherits from the Error prototype/class, either directly or indirectly
(eg. through a custom error type). Note the capitalization!

Backpressure
TODO

Stream API
A stream is any object which has the following properties:

promistreamVersion : Set to the value 0 , as of this version of the specification.

description : A short string containing a brief textual description (a few words at most) of the
stream; this will typically be something like a package name, or a description of the purpose. This

https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#backpressure
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#stream-api

string is for debugging purposes only; it is not guaranteed or expected to be unique or in any
particular format, but should be concise enough to be usable in a visualization of a pipeline.

abort : A function which, upon invocation, causes the stream to run its stream termination logic.
Further defined below.

peek : A function which, upon invocation, determines the availability of more values upstream.
Further defined below.

read : A function which, upon invocation, produces a value. Further defined below.

Whether something constitutes a valid stream, is determined solely by the object shape; the object
does not need to inherit from any particular prototype, nor does it need to have any particular
name.

Below, the behaviours of these functions will be detailed further; note that there will often be
special technical requirements for different types of streams, that are detailed after the general
description in a subsection.

The read function
Signature: read(source)

This function should, upon invocation, produce a Promise which eventually resolves (to a read
value) or rejects (with an error or marker). The stream MAY internally delay the settling of this
Promise to control backpressure. The stream MAY (and typically will) consult the stream directly
upstream from it (source), by calling its read function, in the process of producing its own value.

When the upstream read was successful, and a value was obtained, the produced Promise will
resolve with that value. When the upstream read fails, the produced Promise will reject with an
error or marker. Markers are simply Errors of a specific type, that signify the state of the source
stream; the possible markers are detailed below.

When you read from upstream, you should be prepared to handle these markers if your stream is
managing any resources that it needs to dispose of upon the pipeline completing or terminating
(but it SHOULD only do so upon the first observation of a marker). Errors that are not markers can
typically be left to propagate downstream; unless specified otherwise below. All markers and errors
are rejections rather than resolutions, and so can be handled with a catch block, or will
automatically propagate if left uncaught.

Note that the read function MAY be called while a previous read operation is still in flight (see
"Ordering considerations" below), and streams should be prepared to handle this.

Types of stream ending

https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#the-read-function
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#types-of-stream-ending

There are three different ways in which a pipeline can end, signified by different markers:

EndOfStream : The source stream reached its end successfully and all streams have
drained their buffers. This is the success condition, and is initiated by the source stream.
Aborted (with true as reason): The source stream was prematurely terminated, but
under expected conditions. This is typically initiated by code that is external to the
pipeline, signifying that it does not need any further data from the pipeline, and the
streams within it can dispose of any resources they are holding onto. This is arguably also
a success condition.
Aborted (with an Error as reason): The source stream was prematurely terminated,
due to an unexpected error. This may have been initiated by external code, but will
typically happen from within a stream in the pipeline, when it encounters an unexpected
failure. This is the failure condition.

Dealing with uncertain reads
A thing to remember is that a read call MUST always produce a Promise which resolves to a value
or rejects to an error or marker. It is not allowed (or possible) to respond with a "try again later"; in
that case, your stream SHOULD return a Promise that will only be settled at that later moment.

This is especially important for eg. transform streams that do not have a 1:1 correspondence
between the values it reads from upstream, and the values that it yields itself, such as filtering
streams. In that case, the stream should typically implemented such that it continues reading from
upstream until an acceptable value has been obtained, and only then yield that value.

Ordering considerations
By default, streams SHOULD always process reads 'in order'; that is, if there is some kind of
correspondence between the yielded values and the upstream reads, the order of these yielded
values must also correspond, even in the face of multiple concurrent in-flight read operations. This
is also true for markers and errors. Streams MAY produce values out of order, but if they do so, this
MUST be clearly documented and serve a specific documented purpose.

If the stream's internal logic is incapable of processing concurrent requests, the stream MUST
enforce sequential processing of inbound read requests through some sort of queueing
mechanism.

-Non-normative- A stream may be composed with the off-the-shelf sequentialize stream to meet this
requirement without implementing any custom queueing logic.

Source streams
A source stream will have its read function invoked without a source argument, as there is no
stream upstream of it, and source streams are expected to either generate their values or obtain
them from some source external to the pipeline.

https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#dealing-with-uncertain-reads
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#ordering-considerations
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#source-streams

A source stream is responsible for producing (and rejecting with) markers when the pipeline has
been completed or terminated. It may either reuse a previously-generated marker, or generate a
new one upon each read invocation.

Sink streams
A sink stream MUST watch for non-marker rejections of upstream reads (ie. rejection with an Error),
and if one is observed, call its upstream's abort function with that Error as an argument. This is
critical to the correct propagation of automatic aborts for unexpected errors.

A sink stream MUST, upon the first post-buffer-drain encounter with an Aborted marker where the
reason is an Error, reject with that Error (ie. not the marker). It MUST propagate the Aborted
marker itself on subsequent reads. This ensures that calling code receives the original Error, in the
same way that they would if streams had not been used.

A sink stream SHOULD, upon any encounter with an Aborted marker where the reason is true ,
reject with that marker to propagate it. It MAY choose to resolve with a value instead.

A sink stream MUST, upon the first read invocation, eventually either resolve with a value (even if it
is undefined) or reject with an Error. It MAY respond to subsequent read invocations by propagating
an EndOfStream or Aborted marker.

Streams that buffer
If you are implementing a stream that has some sort of internal buffering, then there is a special
consideration that you need to make for ended streams; when you either generate or receive an
EndOfStream / Aborted marker, you should make sure to process your internal buffers prior to
propagating it downstream. Often this will mean buffering up the marker internally, and only
returning it once enough reads have occurred to exhaust the internal buffer (although you MAY
implement any buffer-draining behaviour that is appropriate to the purpose of your stream).

Since EndOfStream and Aborted markers are final and reusable, you MAY buffer these up and
continue yielding them on future reads in perpetuity, without invoking any further upstream reads,
if this makes implementation easier for you.

The peek function
Signature: peek(source)

This function should, upon invocation, produce a Promise which eventually resolves to a boolean,
indicating whether more data is available at the source stream that has not been read yet. While
this query MAY be answered by any stream in the pipeline if it has specific reason to need to do so,
it SHOULD typically be propagated upstream (to source) as-is such that the source stream can
answer it (unless specified otherwise below).

https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#sink-streams
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#streams-that-buffer
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#the-peek-function

Note that any stream which answers true to a peek request MUST reserve or otherwise keep track
of the 'peeked' items, to ensure that many subsequent peek requests will only result in as many
confirmations as there are actual items to be read. In the simplest implementation, this may simply
be a counter of how far the pipeline has 'peeked ahead' (decremented by actual reads happening),
but for more complex buffering situations it may be necessary to maintain buffers of actual values.
A stream responding to a peek call MAY therefore invoke the upstream read function if necessary
to implement its behaviour. however, it MAY NOT initiate any processing of the resulting value if
doing so would cause side-effects.

The Promise that is produced for a peek call MAY be delayed by the stream, if this is necessary for
determining an accurate answer to the query.

-Non-normative, rationale- The purpose of the peek function is to support safe parallelization,
especially when unbounded; this ensures that even when a parallel reading implementation is
allowed to have Infinity simultaneous reads, there will only ever be approximately as many in-flight
reads as there are items readily available at the source stream. This prevents resource exhaustion.
This cannot be implemented simply by doing many read calls, as a read may take a very long time
to be processed and cause side-effects, thereby defeating the point - the peek call is instead
meant to be propagated more or less directly to the source stream, bypassing any processing
delays.

The abort function
Signature: abort(reason, source)

This function should, upon invocation, do any teardown that is immediately needed when a pipeline
is aborted, and then propagate the abort call to the stream upstream from it (source), passing on
the reason as well. Note that this is not the only opportunity to do stream teardown; for teardown
that is not immediately required, it will often be easier to handle this in the read implementation
alongside EndOfStream markers, as an Aborted marker will be passed down upon the next read
after the abort call has arrived at the source stream.

The abort function may be called with a reason of either true (to indicate a termination under
expected conditions, eg. no further data is required) or an Error (to indicate a termination due to an
unexpected error somewhere in the pipeline).

Source streams
Source streams must additionally, upon invocation, set an internal 'aborted' flag. Subsequent reads
(after any buffer draining) should produce Aborted markers.

Sink streams

https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#the-abort-function
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#source-streams-1
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#sink-streams-1

A sink stream is a stream which is expected to be placed at the end of a pipeline. Upon reading
from it, it SHOULD start driving reads above it (eg. in an asynchronous loop), and eventually yield a
value that represents the outcome of that read process. It MAY choose to support being read from
multiple times, if necessary to make it work ergonomically. The value it yields MAY be something
that represents an in-progress read loop (such as a generator), rather than a conclusive value.

-Non-normative- Some examples of the values that a sink stream may yield:

An array containing all of the values read from upstream, yielded when the pipeline
completes. (collect)
A stream in some other format, that produces values as they are read from upstream (to-
node-stream)
The last observed value, yielded when the pipeline completes (default behaviour of
simple-sink)

Promistreams

What to expect from the
Promistreams beta phase
Promistreams are currently in their beta testing phase. What this means in practice:

You can start using Promistreams in your projects today. But be prepared to sometimes
debug issues.
Linear pipelines will generally work perfectly. More complex pipelines may still run into
small issues in edgecases.
The stream interface has not been stabilized yet, but it is also not likely to meaningfully
change anymore.
At any given time, the latest versions of @promistream packages should work correctly
together.
A pretty broad collection of streams is already available. Some of the most commonly
useful ones are documented on this wiki, and there are more packages on npm.
However, the stream collection is still incomplete; in particular, several splitting and
merging streams are still in active development, as well adapter streams from and to
different stream and sequence types.
Documentation may still be missing for a (shrinking) subset of Promistream packages.
However, a Promistream package will typically include an example.js that demonstrates its
use.
Bugs should, for now, be reported privately, either on Matrix (@joepie91@pixie.town) or
by e-mail (admin@cryto.net). I'll walk through the issue and debug it with you personally.
If you're not sure whether it's a bug, then it's a bug, just potentially a documentation bug
instead of an implementation bug. Please let me know!

https://wiki.slightly.tech/books/projects/page/commonly-useful-promistream-packages
https://www.npmjs.com/~promistream

Promistreams

Example project: Scraping
XML sitemaps

In this Promistreams tutorial, we'll build a small sitemap scraper that can recursively follow XML
sitemaps, and collect every page it finds along the way, printing the URLs of all the pages to the
terminal. This kind of code might come in handy when building a search engine, for example.

The sitemaps that we want to scrape start at https://fake-sitemap.slightly.tech/. These sitemaps
were created specifically for this guide, and you can freely experiment with scraping them, just try
not to break the server. They do not point to any valid page URLs, but all the other sitemap files
referenced in them are valid.

What you will need
A Node.js version that is still being updated
A JS package manager such as pnpm or npm (we will use pnpm in this guide, but npm will
work too)
A code editor of some kind, whichever one you prefer working in
A working internet connection
The ability to install native Node modules that require compilation (this usually means
having your operating system's build tools installed)
A Linux-style terminal (WSL should work too)
A few dependencies from npm, but these will be installed throughout the guide.

The code in this guide scrapes an artificial sitemap for a non-existent site, that was created
specifically for this article. When scraping anything on a site that you do not run yourself,
you should always check the robots.txt to determine whether the owner is okay with you
scraping it, and avoid collecting personal information. There are some rare cases where it
makes sense to ignore robots.txt, but especially if you are doing something commercial,
your case almost certainly isn't one of them. Permission matters!

This guide will provide example code for the project. While you could just copy-paste
the code into your file, I recommend typing it out manually instead. In years of tutoring
developers, I've found that this really helps people to remember how things work, and it

https://fake-sitemap.slightly.tech/
https://pnpm.io/

Creating the project
In your terminal, create a new folder for your project, move into it, and initialize the project:

Making a HTTP request
To scrape these sitemaps, we will need to make a couple of HTTP requests. First of all, let's make a
single one to check that everything works. First of all, install the bhttp dependency that we will
need - it is a HTTP client, and will handle the HTTP request for us:

Then, create a new file in your project folder (eg. index.js), and write the following code in it:

makes it easier to apply the ideas to your own projects later on.

Are you using npm instead? Then the pnpm add command will be npm install instead, and
the pnpm init command will be npm init .

mkdir sitemap-scraper
cd sitemap-scraper
pnpm init

pnpm add bhttp

When running pnpm add or npm install commands, always make sure that your terminal is
currently inside of the project directory, otherwise the package will be installed in the wrong
place.

let bhttp = require("bhttp");
let assert = require("node:assert");

(async () => { // async IIFE
 let response = await bhttp.get("https://fake-sitemap.slightly.tech/sitemap.xml");
 assert(response.statusCode === 200);

 console.log(response.body.toString());
})();

All this does is make an asynchronous HTTP request, wait for it to complete, verify that it
responded with a HTTP 200 status code (throwing an error if not), and then read the response body
as a string and print that to the terminal. Try running this code - if it's working correctly, you should
see some XML appear on your terminal.

Making a queue
Okay, so we've made one HTTP request, and that works. However, there's a peculiarity about XML
sitemaps: they can be recursive. It's possible for one XML sitemap file to not just list page URLs,
but also other sitemap files. To correctly discover all of the page URLs on a site through its
sitemap, you will often have to follow these references and scrape those referenced sitemap files
too!

An easy way to solve this problem is to work with a queue. A queue does exactly what it sounds
like; it keeps a list of all the things that need to be done (sitemap files that need to be scraped, in
this case), and works through them one by one. In JS, the simplest possible implementation of a
queue is an array. The queue will be forgotten once you exit the process, but because there are
usually only a few sitemap files and then the task is done, that is okay here.

So, let's add a queue to our code:

Why is there a weird async function around the code? This is the asynchronous
equivalent of an IIFE, an Immediately Invoked Function Expression. It defines an
asynchronous arrow function, and immediately calls it. This allows us to use async / await in
what would otherwise be top-level code, which is not possible in all JS environments.

What does XML look like? If you're not familiar with XML, it looks something like
<foo>bar</foo> , ie. text and tags enclosed in angle brackets. The precise structure can vary
from file to file - XML is just a data encoding, it doesn't define what kind of data an XML
document can contain, and we don't need to care about the structure for the purpose of this
guide.

let bhttp = require("bhttp");
let assert = require("node:assert");

(async () => { // async IIFE
 let queue = [];
 queue.push("https://fake-sitemap.slightly.tech/sitemap.xml");

 let response = await bhttp.get(queue[0]);
 assert(response.statusCode === 200);

Wait, that's it? Yep! Well, sort of. Our queue isn't really doing any queue-things yet - it's still
making a single request and then exiting, but that request is "in a queue" now. So, let's make the
queue actually useful:

We've now added recursion to our request code. Take your time, give it a careful read, and try to
follow the flow of the code. At the end of the IIFE, doTask is called. If there's at least one item in the
queue, it takes it from the queue (note how it now uses .shift() instead of [0] !), and uses it as the
URL to fetch. Then after it has logged the response, it calls itself again, to process the next item in
the queue, if any. If there are no items left, it will do nothing, doTask will return undefined, and the
stack of recursive function calls will unravel to nothing, causing the process to eventually exit.

So now a queue has been added, and we're taking URLs from the queue to fetch, but we are still
only making a single request and then exiting. We're not actually using that recursive logic for
anything useful yet. For the next step, we're going to have to actually parse the contents of the
sitemap file, not just print it to the terminal, and that is where Promistreams come in.

 console.log(response.body.toString());
})();

let bhttp = require("bhttp");
let assert = require("node:assert");

(async () => { // async IIFE
 let queue = [];
 queue.push("https://fake-sitemap.slightly.tech/sitemap.xml");

 async function doTask() {
 if (queue.length > 0) {
 let response = await bhttp.get(queue.shift());
 assert(response.statusCode === 200);

 console.log(response.body.toString());
 return doTask();
 } else {
 // Do nothing, process will exit by itself.
 }
 }

 doTask();
})();

Parsing sitemap files
So, what is a sitemap file actually? In concept, it's really simple - it's just a list of other URLs,
sometimes sitemaps and sometimes webpages, with a bunch of optional extra metadata to know
what kind of content is going to be on the page. Sitemaps are mainly used by search engines to
know which pages it needs to look at, and add to its search index.

Sitemaps can take a few forms, but the typical machine-readable form (which is the one we're
interested in here!) is in XML, and it's human-readable too - in fact, you can just look at the file that
we're going to start scraping from by clicking that link. Your browser will most likely show you a
bunch of XML.

First of all, we need to install a few packages:

Whew, that's a lot of packages at once! Let's have a look at what each package does for us:

@promistream/pipe : This is probably the most important Promistream package; it gives you
the pipe function, which you use to pipe together different streams into a pipeline. It's
what makes Promistreams work!
@promistream/from-node-stream : This package will let you convert a Node.js stream into a
Promistream automatically. We need this because bhttp will only give us a Node stream,
not a Promistream.
@promistream/decode-string : Remember how in the very first version of our code, we called
.toString() on the response body? This does the same thing, but for a stream of Buffers
(which is what we will get from bhttp). It converts raw binary data into readable text
according to some sort of text encoding, UTF-8 in our case. We have to do that because
the sitemap parser doesn't accept Buffers, only strings.
@promistream/parse-sitemap : This is the central point of this example project; it's the stream
that actually parses the sitemap contents, turning it from a stream of XML (strings) into a
stream of objects with sitemap/page URLs.
@promistream/simple-sink : Finally, this is what 'drives' the whole pipeline. A sink will keep
requesting values and process them with some custom callback, forever. The custom
callback is where we do something with the objects we got from @promistream/parse-
sitemap .

pnpm add @promistream/pipe @promistream/from-node-stream @promistream/decode-string
@promistream/parse-sitemap @promistream/simple-sink

About Buffers and strings: In Node streams, it is common for many streams to accept
either strings or Buffers, and convert between the two automatically. In Promistreams, this is
not the case - because that kind of automatic conversion can introduce subtle bugs, it is
avoided in stream implementations and you are expected to do the conversation yourself
using an encoding or decoding stream. A Promistream package will typically accept either

https://fake-sitemap.slightly.tech/sitemap.xml
https://fake-sitemap.slightly.tech/sitemap.xml

Then, let's add the sitemap parsing to our code!

Buffers or strings - read the documentation of a stream package carefully to learn what sort
of values it expects.

let bhttp = require("bhttp");
let assert = require("node:assert");

const pipe = require("@promistream/pipe");
const fromNodeStream = require("@promistream/from-node-stream");
const decodeString = require("@promistream/decode-string");
const parseSitemap = require("@promistream/parse-sitemap");
const simpleSink = require("@promistream/simple-sink");

(async () => { // async IIFE
 let queue = [];
 queue.push("https://fake-sitemap.slightly.tech/sitemap.xml");

 async function doTask() {
 if (queue.length > 0) {
 let response = await bhttp.get(queue.shift(), { stream: true });
 assert(response.statusCode === 200);

 await pipe([
 fromNodeStream.fromReadable(response),
 decodeString("utf8"),
 parseSitemap(),
 simpleSink((item) => {
 if (item.type === "sitemap") {
 queue.push(item.url);
 } else if (item.type === "url") {
 console.log("URL found:", item.url);
 }
 })
]).read();

 return doTask();
 } else {
 // Do nothing, process will exit by itself.
 }

We've changed two things here:

1. In the bhttp.get call, we have added a stream: true option; this is what tells bhttp to give us
a Node stream instead of a string, and that will also prevent it from reading the whole
response in memory at once.

2. We've used the packages that we just installed to construct and use a pipeline, to read
out the entire response - in a streaming manner, so not everything is loaded into memory
at once! - and process the results item-by-item, either adding them to the queue (if the
URL is a sitemap URL) or printing them to the terminal (if it's a page URL instead).

What is actually happening here, is that when you call .read() on a pipeline (as we do here), that
call is forwarded to the last stream in the pipeline - in our case, that is the simpleSink stream, which
is designed to start reading from its upstream forever as soon as it is read from once. Or well,
"forever" - at least until the stream runs out of values.

This is how every Promistream pipeline works! Sink streams, as a category, are designed as the
streams that 'drive' a pipeline; they are responsible for, in some way, reading from the upstream
continuously. You will usually use either a collect or a simpleSink stream, which read forever and
then return a Promise, but sink streams are technically allowed to use any read pattern and return
any value, and that is how adapters to other stream implementations work too.

The Promise returned from a simpleSource stream will resolve when the stream has completely run
out of items to process (ie. when our queue is empty), or reject when an error occurs anywhere
within the pipeline. This means you can await the return value of pipe(...).read() , like we're doing
here, and the rest of the code will wait for the streaming process to complete, or it will throw an
error if something goes wrong. Just like any other async code! This is what makes Promistreams so
easy to integrate into other code; it's just an asynchronous function call, really.

After running this code, you should get output that looks something like this:

 }

 doTask();
})();

URL found: https://fake-sitemap.slightly.tech/page-0a.html
URL found: https://fake-sitemap.slightly.tech/page-0b.html
URL found: https://fake-sitemap.slightly.tech/page-0c.html
URL found: https://fake-sitemap.slightly.tech/page-0d.html
URL found: https://fake-sitemap.slightly.tech/page-0e.html
URL found: https://fake-sitemap.slightly.tech/page-1a.html
URL found: https://fake-sitemap.slightly.tech/page-1b.html
URL found: https://fake-sitemap.slightly.tech/page-1c.html
URL found: https://fake-sitemap.slightly.tech/page-1d.html

We're done! Right? Well, not quite, because there's still a problem - we're absolutely hammering
the server hosting the sitemaps. We're making a lot of requests immediately after each other! With
a small sitemap like this it's not a huge problem, but this can cause serious issues for real-world
sites, which is why a scraper should always be rate-limited.

Restricting our scraping speed
There are many ways to implement a rate limit, but the simplest one is to simply have a fixed
delay between each request, a time during which nothing happens. Your code would then look
something like this:

URL found: https://fake-sitemap.slightly.tech/page-1e.html
URL found: https://fake-sitemap.slightly.tech/page-2a.html
URL found: https://fake-sitemap.slightly.tech/page-2b.html
URL found: https://fake-sitemap.slightly.tech/page-2c.html
URL found: https://fake-sitemap.slightly.tech/page-2d.html
URL found: https://fake-sitemap.slightly.tech/page-2e.html
URL found: https://fake-sitemap.slightly.tech/page-1aa.html
URL found: https://fake-sitemap.slightly.tech/page-1ab.html
URL found: https://fake-sitemap.slightly.tech/page-1ac.html
URL found: https://fake-sitemap.slightly.tech/page-1ad.html
URL found: https://fake-sitemap.slightly.tech/page-1ae.html
URL found: https://fake-sitemap.slightly.tech/page-1ba.html
URL found: https://fake-sitemap.slightly.tech/page-1bb.html
URL found: https://fake-sitemap.slightly.tech/page-1bc.html
URL found: https://fake-sitemap.slightly.tech/page-1bd.html
URL found: https://fake-sitemap.slightly.tech/page-1be.html

Rate-limiting is not optional. Many websites will ban you if you make repeated requests
without a rate limit, often automatically. They may not be willing to unban you, so always
make sure before you run your scraper code, that you have properly rate-limited it. A good
way to do this is to temporarily add a console.log before the line of code that makes the
HTTP request, and look at the terminal to see whether the delay you are expecting is
actually there.

let bhttp = require("bhttp");
let assert = require("node:assert");
const { setTimeout } = require("node:timers/promises");

const pipe = require("@promistream/pipe");

We've only really changed one thing here; we're using a special setTimeout version provided by
Node.js, that returns a Promise (this is not the standard one in JS!). We could've also used any
other timed Promise, such as Promise.delay in Bluebird. We await this timed Promise just before we

const fromNodeStream = require("@promistream/from-node-stream");
const decodeString = require("@promistream/decode-string");
const parseSitemap = require("@promistream/parse-sitemap");
const simpleSink = require("@promistream/simple-sink");

(async () => { // async IIFE
 let queue = [];
 queue.push("https://fake-sitemap.slightly.tech/sitemap.xml");

 async function doTask() {
 if (queue.length > 0) {
 let response = await bhttp.get(queue.shift(), { stream: true });
 assert(response.statusCode === 200);

 await pipe([
 fromNodeStream.fromReadable(response),
 decodeString("utf8"),
 parseSitemap(),
 simpleSink((item) => {
 if (item.type === "sitemap") {
 queue.push(item.url);
 } else if (item.type === "url") {
 console.log("URL found:", item.url);
 }
 })
]).read();

 await setTimeout(1000);
 return doTask();
 } else {
 // Do nothing, process will exit by itself.
 }
 }

 doTask();
})();

recursively call doTask again, and that's all we need - it will now wait a second before processing
the next queue item. If you run your code now, you will see that it spits out a set of URLs
approximately once every second!

Conclusion
And that's it! You now have a working XML sitemap scraper using Promistreams, that can handle
very large sitemaps of many gigabytes, without filling up your memory - because everything is
handled in a streaming manner. For now, this guide will leave off here, but it may be expanded at
some later date with some extra features, like making the task queue itself a Promistream too. If
you're curious and want more practice, try to see if you can make that change yourself using
@promistream/simple-queue and @promistream/rate-limit !

