Commonly useful
Promistream packages

All of the existing Promistream packages can be found in the package list, but they're not very

well-explained. The majority of these should be functional and have an example.js demonstrating
their use.

Here's a selection of the packages you are most likely to need:

Common cases

e @promistream/pipe : the core package that pipes streams together into a pipeline.
Technically optional but strongly recommended to use.

e @promistream/debug : transform stream that simply prints everything that goes through it,
optionally with a label. Only for pipeline debugging use.

e @promistream/simple-source : low-level source stream abstraction. Implements the
specification responsibilities, leaving you to worry only about how to produce values.
Suitable for the majority of usecases.

e @promistream/simple-sink : low-level sink stream abstraction. Same as above, but on the
other end.

e @promistream/map : like the array method, but as a Promistream. Also functions as a
general-purpose low-level transform stream.

e @promistream/filter : like the array method, but as a Promistream.

e @promistream/collect : high-level sink stream, that simply read-loops and collects all read
values into an array, then resolves with that array. Often what you want. Also a good
example of @promistream/simple-sink use, internally.

e @promistream/from-node-stream : source/sink/transform wrappers for all types of Node.js
streams, to integrate them with a Promistream pipeline.

e @promistream/from-iterable : creates source stream from a synchronous or asynchronous
iterable (including arrays).

e @promistream/range-numbers : high-level source stream, generates numbers in a specified
range.

Complex cases

e @promistream/buffer : reads an array (of 0 or more items) from upstream, and then
dispenses the values in that array (if any) one by one on subsequent reads by its


https://www.npmjs.com/org/promistream
https://gist.github.com/joepie91/f4f9a56d37a5935833c242defd4f732c#common-cases
https://gist.github.com/joepie91/f4f9a56d37a5935833c242defd4f732c#complex-cases

downstream. Often composed with others.

e @promistream/dynamic : lets you pass a value through different streams/pipelines depending
on the value. Finicky and high-overhead; usually fork-and-merge is a better option.

e @promistream/parallelize : lets you run N reads (up to and including Infinity ) simultaneously.

e @promistream/sequentialize : forces inbound reads from downstream to occur sequentially,
'protecting' its upstream. Mandatory to use if your stream does not support parallel
operation and you intend to publish it, or you use parallelize elsewhere in your pipeline.

e @promistream/rate-limit : as the name implies, throttles reads going through it but leaves
results otherwise unmodified.

e @promistream/simple-queue : high-level source stream that functions as a task queue; items
can be added externally.

Specific usecases

e @promistream/read-file : as the name implies. Produces buffers.

e @promistream/decode-string : as the name implies. Takes buffers, produces strings.
e @promistream/split-lines : as the name implies. Takes strings.

e @promistream/parse-xml : streaming XML parser.

There are other Promistream packages, and there will be many more! These are just some of the
ones currently available, that you're likely to need at some point.

Revision #1
Created 10 December 2024 23:48:12 by joepie9l
Updated 10 December 2024 23:48:48 by joepie9l


https://gist.github.com/joepie91/f4f9a56d37a5935833c242defd4f732c#specific-usecases

