
How do I use Promistreams?
Here's a simple example of a valid Promistream pipeline:

That's it! That's all there is to it. The call to pipe returns a Promise, and you can await it like any
other Promise - if something goes wrong anywhere inside the pipeline, it automatically aborts the
stream, running any teardown logic for each stream in the process, and then throws the original
error that caused the failure. Otherwise, you get back whatever output the collect stream produced
- which is simply an array of every value it has read from upstream.

In this example, the fromIterable is what is known as the source stream - it provides the original
data - and the collect stream is what's known as the sink stream, which is responsible for reading
out the entire pipeline until it is satisfied, which usually means "the source stream has run out of
data" (but it can choose to behave differently!). The streams inbetween, just map in this case, are
transform streams.

Look carefully at the pipe invocation, and how read is called on it. This is necessary to 'kickstart'
the pipeline. The only thing that pipe does is to compose a series of Promistreams into one
combined stream, automatically wiring up both ends, and you still need to call read on the result
to cause the last stream in that pipeline to start reading stuff. Doing so is basically equivalent to
calling read on the collect stream directly, with the streams before it as an argument, the pipe
function just wires this up for you.

"use strict";

const pipe = require("@promistream/pipe");
const fromIterable = require("@promistream/from-iterable");
const map = require("@promistream/map");
const collect = require("@promistream/collect");

(async function() {
	let numbers = await pipe([
		fromIterable([1, 2, 3, 4]),
		map((number) => number * 2),
		collect()
]).read();

	console.log(numbers); // [2, 4, 6, 8]
})();

Now this example is not very interesting, because everything is synchronous. But it still works the
exact same if we do something asynchronous:

We've replaced the map callback with one that is asynchronous, and it still works the exact same
way! Of course in a real-world project it would be absurd to use a remote service for doubling
numbers, but this keeps the example simple to follow. The asynchronous logic could be anything -
as long as it returns a Promise.

What if we want to reuse this logic in multiple pipelines? We could just have a function that
generates a custom map stream on-demand. It would need to be a function that creates one,
because each pipeline would still need its own map instance - streams are single-use! It might look
like this:

"use strict";

const pipe = require("@promistream/pipe");
const fromIterable = require("@promistream/from-iterable");
const map = require("@promistream/map");
const collect = require("@promistream/collect");

(async function() {
	let numbers = await pipe([
		fromIterable([1, 2, 3, 4]),
		map(async (number) => await doubleNumberRemotely(number)), // I have no idea why you would want to do
this
		collect()
]).read();

	console.log(numbers); // [2, 4, 6, 8]
})();

"use strict";

const pipe = require("@promistream/pipe");
const fromIterable = require("@promistream/from-iterable");
const map = require("@promistream/map");
const collect = require("@promistream/collect");

function double() {
	// We're using the synchronous version here again, because doubling numbers remotely was a terrible idea!
	return map((number) => number * 2);

As you can see, it's all just functions returning Promises (or values, or throwing errors - the rules
are the same as within any async context).

But what if we want to make a more complicated custom stream? Let's filter out all the numbers
that are a multiple of ten!

}

(async function() {
	let numbers = await pipe([
		fromIterable([1, 2, 3, 4]),
		double()
		collect()
]).read();

	console.log(numbers); // [2, 4, 6, 8]
})();

"use strict";

const pipe = require("@promistream/pipe");
const fromIterable = require("@promistream/from-iterable");
const map = require("@promistream/map");
const filter = require("@promistream/filter");
const collect = require("@promistream/collect");

function doubleAndFilter() {
	return pipe([
		map((number) => number * 2),
		filter((number) => number % 10 > 0)
]);
}

(async function() {
	let numbers = await pipe([
		fromIterable([1, 2, 3, 4]),
		doubleAndFilter()
		collect()
]).read();

	console.log(numbers); // [2, 4, 6, 8]

Wait, what's pipe doing there? Well, think back to this earlier comment:

We're now getting to the reason why this is the case, and why the composing and reading of
pipelines are split up! Because the composing doesn't cause any reads, and it doesn't require a
complete pipeline (with a data source and a sink), you can also use it to compose together multiple
streams into a single reusable stream, that can then be inserted into another pipeline!

Since we're now both mapping and filtering, this is exactly what we need - some way to represent
those two streams, in sequence, with pre-specificed callbacks, exposed externally as a single
custom stream - and so we use pipe to accomplish that. The resulting pipeline works just as if you
were to manually insert both of those streams after one another, with the same behaviours and
error handling. This is the key to what makes Promistreams composable.

This pretty much covers the basic use of Promistreams. There are many different types of streams,
including branching streams, that change the exact behaviour of the pipeline; but the basic
operation always looks like this. Pipe together array of streams, call read on the resulting pipeline
once it's finalized, or return the un-read pipeline if it's meant to be used as a composite stream.
Even the more complex pipelines still work like this.

If you want to see what a more real-world example would look like, you may also want to look at
the example project tutorial.

})();

The only thing that pipe does is to compose a series of Promistreams into one
combined stream, automatically wiring up both ends, and you still need to call
read on the result to cause the last stream in that pipeline to start reading stuff.

“

Revision #3
Created 10 December 2024 23:46:13 by joepie91
Updated 24 December 2024 20:56:55 by joepie91

https://wiki.slightly.tech/books/projects/page/example-project-scraping-xml-sitemaps

