
Specification (draft)

Core concept
A Promistream is, at its core, simply a chain of Promises established through recursive
asynchronous calls. A read is requested from the last stream in a pipeline (the "sink"), it requests a
read from the stream upstream from it, which requests a read from the stream upstream to it, and
so on - until the first stream in the pipeline, the "source", is reached.

Each stream along the way may choose to modify both the value itself, as well as the
characteristics of it being produced; it may be delayed, filtered, turned into multiple values, or any
other transformation that the project requires.

Therefore, the flow (simplified) is as follows:

Definitions
This is an overview of the terms used in this specification, as a reading aid; note that their
descriptions here are limited, and may not be sufficient to implement their concepts. Further
technical definition may exist elsewhere in the specification.

Stream: An object which defines (at least) a function that reads a value from another
stream and/or yields a value upon being read.
Pipeline: A sequence of streams, which reads and their resulting values propagate
through, potentially being transformed in the process.
Source stream: The first stream in a pipeline. This is where values originally originate
from. They may be generated on-the-fly, or originate from an external source of some
kind.
Sink stream: The last stream in a pipeline. This is where the read is originally initiated.
Transform stream: A stream which exists in a pipeline somewhere inbetween a source
and a sink stream.
Pipeline completion: The point where an entire pipeline has been successfully read to
its end; as defined by its source stream. A pipeline has only fully completed once all

This is a draft. It is neither complete nor, probably, correct.

USER CODE --read--> SINK STREAM --read--> TRANSFORM STREAM(S) --read--> SOURCE STREAM --value--
> TRANSFORM STREAM(S) --value--> SINK STREAM --value--> USER CODE

https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#core-concept
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#definitions

internal buffers on all streams in the pipeline have run out.
Pipeline termination: The point where a pipeline has been terminated or aborted
prematurely. Again, it has only fully terminated once all internal buffers on all streams in
the pipeline have run out.
Buffer: A mechanism that any stream may have, where it internally stores some value(s)
that are already known, but that it does not intend to yield or process until a next read.
Frequently used to handle values that result in multiple transformed values (or vice
versa), as well as format parsing.
Forking stream: A stream which yields multiple other 'forks' (which are also streams),
across which values are distributed or divided in some manner specific to the forking
stream (mirroring, round-robin, etc.).
Converging stream: The inverse of a forking stream; it takes multiple 'forks' and
combines them back into one coherent stream, in some manner specific to the converging
stream (combining, interspersing, etc.).
Upstream: The stream(s) that come before the stream in question, ie. towards the
direction of the source stream.
Downstream: The stream(s) that come after the stream in question, ie. towards the
direction of the sink stream.
EndOfStream marker: A special error type that signals that the end of the (source)
stream has been reached successfully. There will be no more data to read.
Aborted marker: A special error type that signals that the pipeline has been terminated
(ie. aborted) prematurely; either due to expected conditions, or due to an unexpected
error.
Side-effects: Any kind of externally observable change or interaction that a stream
makes outside of its locally-defined state. This includes things like database queries,
filesystem operations, but also eg. changing global variables or some other value that is
'owned' by something other than the stream.
Error: Any object that inherits from the Error prototype/class, either directly or indirectly
(eg. through a custom error type). Note the capitalization!

Backpressure
TODO

Stream API
A stream is any object which has the following properties:

promistreamVersion : Set to the value 0 , as of this version of the specification.

description : A short string containing a brief textual description (a few words at most) of the
stream; this will typically be something like a package name, or a description of the purpose. This
string is for debugging purposes only; it is not guaranteed or expected to be unique or in any
particular format, but should be concise enough to be usable in a visualization of a pipeline.

https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#backpressure
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#stream-api

abort : A function which, upon invocation, causes the stream to run its stream termination logic.
Further defined below.

peek : A function which, upon invocation, determines the availability of more values upstream.
Further defined below.

read : A function which, upon invocation, produces a value. Further defined below.

Whether something constitutes a valid stream, is determined solely by the object shape; the object
does not need to inherit from any particular prototype, nor does it need to have any particular
name.

Below, the behaviours of these functions will be detailed further; note that there will often be
special technical requirements for different types of streams, that are detailed after the general
description in a subsection.

The read function
Signature: read(source)

This function should, upon invocation, produce a Promise which eventually resolves (to a read
value) or rejects (with an error or marker). The stream MAY internally delay the settling of this
Promise to control backpressure. The stream MAY (and typically will) consult the stream directly
upstream from it (source), by calling its read function, in the process of producing its own value.

When the upstream read was successful, and a value was obtained, the produced Promise will
resolve with that value. When the upstream read fails, the produced Promise will reject with an
error or marker. Markers are simply Errors of a specific type, that signify the state of the source
stream; the possible markers are detailed below.

When you read from upstream, you should be prepared to handle these markers if your stream is
managing any resources that it needs to dispose of upon the pipeline completing or terminating
(but it SHOULD only do so upon the first observation of a marker). Errors that are not markers can
typically be left to propagate downstream; unless specified otherwise below. All markers and errors
are rejections rather than resolutions, and so can be handled with a catch block, or will
automatically propagate if left uncaught.

Note that the read function MAY be called while a previous read operation is still in flight (see
"Ordering considerations" below), and streams should be prepared to handle this.

Types of stream ending
There are three different ways in which a pipeline can end, signified by different markers:

https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#the-read-function
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#types-of-stream-ending

EndOfStream : The source stream reached its end successfully and all streams have
drained their buffers. This is the success condition, and is initiated by the source stream.
Aborted (with true as reason): The source stream was prematurely terminated, but
under expected conditions. This is typically initiated by code that is external to the
pipeline, signifying that it does not need any further data from the pipeline, and the
streams within it can dispose of any resources they are holding onto. This is arguably also
a success condition.
Aborted (with an Error as reason): The source stream was prematurely terminated,
due to an unexpected error. This may have been initiated by external code, but will
typically happen from within a stream in the pipeline, when it encounters an unexpected
failure. This is the failure condition.

Dealing with uncertain reads
A thing to remember is that a read call MUST always produce a Promise which resolves to a value
or rejects to an error or marker. It is not allowed (or possible) to respond with a "try again later"; in
that case, your stream SHOULD return a Promise that will only be settled at that later moment.

This is especially important for eg. transform streams that do not have a 1:1 correspondence
between the values it reads from upstream, and the values that it yields itself, such as filtering
streams. In that case, the stream should typically implemented such that it continues reading from
upstream until an acceptable value has been obtained, and only then yield that value.

Ordering considerations
By default, streams SHOULD always process reads 'in order'; that is, if there is some kind of
correspondence between the yielded values and the upstream reads, the order of these yielded
values must also correspond, even in the face of multiple concurrent in-flight read operations. This
is also true for markers and errors. Streams MAY produce values out of order, but if they do so, this
MUST be clearly documented and serve a specific documented purpose.

If the stream's internal logic is incapable of processing concurrent requests, the stream MUST
enforce sequential processing of inbound read requests through some sort of queueing
mechanism.

-Non-normative- A stream may be composed with the off-the-shelf sequentialize stream to meet this
requirement without implementing any custom queueing logic.

Source streams
A source stream will have its read function invoked without a source argument, as there is no
stream upstream of it, and source streams are expected to either generate their values or obtain
them from some source external to the pipeline.

A source stream is responsible for producing (and rejecting with) markers when the pipeline has
been completed or terminated. It may either reuse a previously-generated marker, or generate a

https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#dealing-with-uncertain-reads
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#ordering-considerations
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#source-streams

new one upon each read invocation.

Sink streams
A sink stream MUST watch for non-marker rejections of upstream reads (ie. rejection with an Error),
and if one is observed, call its upstream's abort function with that Error as an argument. This is
critical to the correct propagation of automatic aborts for unexpected errors.

A sink stream MUST, upon the first post-buffer-drain encounter with an Aborted marker where the
reason is an Error, reject with that Error (ie. not the marker). It MUST propagate the Aborted
marker itself on subsequent reads. This ensures that calling code receives the original Error, in the
same way that they would if streams had not been used.

A sink stream SHOULD, upon any encounter with an Aborted marker where the reason is true ,
reject with that marker to propagate it. It MAY choose to resolve with a value instead.

A sink stream MUST, upon the first read invocation, eventually either resolve with a value (even if it
is undefined) or reject with an Error. It MAY respond to subsequent read invocations by propagating
an EndOfStream or Aborted marker.

Streams that buffer
If you are implementing a stream that has some sort of internal buffering, then there is a special
consideration that you need to make for ended streams; when you either generate or receive an
EndOfStream / Aborted marker, you should make sure to process your internal buffers prior to
propagating it downstream. Often this will mean buffering up the marker internally, and only
returning it once enough reads have occurred to exhaust the internal buffer (although you MAY
implement any buffer-draining behaviour that is appropriate to the purpose of your stream).

Since EndOfStream and Aborted markers are final and reusable, you MAY buffer these up and
continue yielding them on future reads in perpetuity, without invoking any further upstream reads,
if this makes implementation easier for you.

The peek function
Signature: peek(source)

This function should, upon invocation, produce a Promise which eventually resolves to a boolean,
indicating whether more data is available at the source stream that has not been read yet. While
this query MAY be answered by any stream in the pipeline if it has specific reason to need to do so,
it SHOULD typically be propagated upstream (to source) as-is such that the source stream can
answer it (unless specified otherwise below).

Note that any stream which answers true to a peek request MUST reserve or otherwise keep track
of the 'peeked' items, to ensure that many subsequent peek requests will only result in as many

https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#sink-streams
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#streams-that-buffer
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#the-peek-function

confirmations as there are actual items to be read. In the simplest implementation, this may simply
be a counter of how far the pipeline has 'peeked ahead' (decremented by actual reads happening),
but for more complex buffering situations it may be necessary to maintain buffers of actual values.
A stream responding to a peek call MAY therefore invoke the upstream read function if necessary
to implement its behaviour. however, it MAY NOT initiate any processing of the resulting value if
doing so would cause side-effects.

The Promise that is produced for a peek call MAY be delayed by the stream, if this is necessary for
determining an accurate answer to the query.

-Non-normative, rationale- The purpose of the peek function is to support safe parallelization,
especially when unbounded; this ensures that even when a parallel reading implementation is
allowed to have Infinity simultaneous reads, there will only ever be approximately as many in-flight
reads as there are items readily available at the source stream. This prevents resource exhaustion.
This cannot be implemented simply by doing many read calls, as a read may take a very long time
to be processed and cause side-effects, thereby defeating the point - the peek call is instead
meant to be propagated more or less directly to the source stream, bypassing any processing
delays.

The abort function
Signature: abort(reason, source)

This function should, upon invocation, do any teardown that is immediately needed when a pipeline
is aborted, and then propagate the abort call to the stream upstream from it (source), passing on
the reason as well. Note that this is not the only opportunity to do stream teardown; for teardown
that is not immediately required, it will often be easier to handle this in the read implementation
alongside EndOfStream markers, as an Aborted marker will be passed down upon the next read
after the abort call has arrived at the source stream.

The abort function may be called with a reason of either true (to indicate a termination under
expected conditions, eg. no further data is required) or an Error (to indicate a termination due to an
unexpected error somewhere in the pipeline).

Source streams
Source streams must additionally, upon invocation, set an internal 'aborted' flag. Subsequent reads
(after any buffer draining) should produce Aborted markers.

Sink streams
A sink stream is a stream which is expected to be placed at the end of a pipeline. Upon reading
from it, it SHOULD start driving reads above it (eg. in an asynchronous loop), and eventually yield a
value that represents the outcome of that read process. It MAY choose to support being read from

https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#the-abort-function
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#source-streams-1
https://gist.github.com/joepie91/9ced67203070051be70c2ae0cd644a30#sink-streams-1

multiple times, if necessary to make it work ergonomically. The value it yields MAY be something
that represents an in-progress read loop (such as a generator), rather than a conclusive value.

-Non-normative- Some examples of the values that a sink stream may yield:

An array containing all of the values read from upstream, yielded when the pipeline
completes. (collect)
A stream in some other format, that produces values as they are read from upstream (to-
node-stream)
The last observed value, yielded when the pipeline completes (default behaviour of
simple-sink)

Revision #1
Created 11 December 2024 12:38:39 by joepie91
Updated 11 December 2024 12:41:33 by joepie91

