
The behaviours and
responsibilities of different
types of streams
While you don't need to know much about the internals of Promistreams to use the libraries, there
are a few things that are useful to know, mostly around which streams are responsible for what. In
the Promistreams design, much of the behaviour is 'emergent'; it's not enforced by some central
runtime or orchestrator, but rather is the emergent result of different parts of the system behaving
in certain defined ways.

For example, you might think that the pipe function does error handling, but it doesn't! All of the
error handling is emergent from the design, and simply a result of how Promises work - a pipeline is
essentially just a very long chain of nested Promise callbacks, internally. All that pipe does is a bit
of bind magic to pass the previous stream into the next one.

However, some things do need to be defined to make things like error handling and concurrency
work correctly. The decision was made to shift this burden to the source and sink streams, as these
are the least likely to require a custom implementation - the result is that a transform stream is not
much more than an async function, and does not need to care about error handling at all if it
doesn't want to act on those errors. Errors will simply propagate through them with the usual
throw/rejection mechanisms of Promises.

The source and sink streams need to do a bit more; they are responsible for emitting 'markers' and
handling rejections, respectively. The 'markers' are EndOfStream and Aborted , and these are
rejected and propagated like an error would be, but they are specially recognized by (some of the)
streams inbetween, as well as the sink stream. They're used for teardown code and, in the case of
the sink stream, to generate the appropriate 'consumer-facing' error to throw from the pipeline as
a whole.

The basic read process looks like this: you call the read function on the pipeline, which calls the
read function on the last stream in it, the sink stream. The sink stream is responsible for
'driving' the pipeline in some way, though exactly what that looks like will depend on the stream
implementation. It is valid for a read on the pipeline to only trigger a single upstream read, but that
is generally not useful - more typically, the sink stream will start a read loop. The stream
upstream from it will call read on its upstream, and so on, recursively, until a value is read from
the source stream. Any stream inbetween may modify the result, discard values, combine them,
read more times, read less times, and so on. Once the source stream runs out of values, it will

start dispensing EndOfStream markers, which will propagate down like an error, and ultimately
signal to the sink stream that it should stop any read loops.

The basic abort process looks like this: abort is called on any stream in the pipeline, that stream
calls abort on its upstream, which does the same recursively, until it ends up at the source
stream. The source stream internally 'latches' into 'aborted' mode, and starts dispensing Aborted
markers on subsequent reads, which are thrown/rejected and therefore propagate back
downstream, until they eventually end up at the sink stream, which unpacks the original error
stored within the Aborted marker and throws it from its read call (and therefore the pipeline's read
call). Subsequent attempts at reading the sink stream will throw the Aborted marker itself, so the
original error is not duplicated.

(The details are more complicated, and if the abort is a happy abort, rather than one based on an
Error, the same latching occurs but with EndOfStream instead of Aborted . Further details will be in
the spec.)

When any stream in the pipeline throws an error or rejects a Promise in its read callback, this
propagates downstream like any error would, until it is received by the sink stream. It then
initiates the abort process described above.

Note that because Aborted and EndOfStream markers are thrown/rejected, transform streams
inbetween the source and the sink do not need to care about them, unless they intend to
implement some kind of teardown logic, in which case they can be intercepted and then re-thrown.
But normally they propagate like any rejection would in a chain of Promises, because that is
essentially what they are!

Revision #1
Created 10 December 2024 23:47:16 by joepie91
Updated 10 December 2024 23:47:29 by joepie91

